LEBENSMITTEL-MONITORING 2003
Ergebnisse des bundesweiten Lebensmittel-Monitorings
IMPRESSUM

Lebensmittel-Monitoring 2003

© 2004 BVL
Herausgeber: Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL),
Dienstsitz Berlin
Anschrift: Postfach 480447 • 12254 Berlin
Telefax: 01888 /412 29 65
E-Mail: poststelle@bvl.bund.de

Redaktion: BVL, Referat 107
ViSdP: Jochen Heimberg
Gestaltung: Anja Eichen, Bonn
Auflage: 4.000 Exemplare
Schutzgebühr: 5,- Euro
Druck: Farbo-Druck, Köln • gedruckt auf Kreuser Lenza Top Recycling (Innenteil) und
Igepa Cartatyp RC (Umschlag)

Bestellungen richten Sie bitte an das Bundesamt für Verbraucherschutz und
Lebensmittelsicherheit, Pressestelle, Rochusstraße 65, 53123 Bonn
Telefon: 0228/61 98-311
Telefax: 0228/61 98-160
E-Mail: pressestelle@bvl.bund.de
Diese Broschüre finden Sie auch als pdf im Internetauftritt des BVL unter www.bvl.bund.de

ISBN 3-9810189-0-7
LEBENSMITTEL-MONITORING 2003
Ergebnisse des bundesweiten Lebensmittel-Monitorings

Gemeinsamer Bericht des Bundes und der Länder
Für das Monitoring zuständige Ministerien

Bund
Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft

Länder
- **Baden-Württemberg**: Ministerium für Ernährung und Ländlichen Raum
- **Bayern**: Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz
- **Berlin**: Senat von Berlin, Senatsverwaltung für Gesundheit, Soziales und Verbraucherschutz
- **Brandenburg**: Ministerium für Landwirtschaft, Umweltschutz und Raumordnung des Landes
- **Bremen**: Freie Hansestadt Bremen, Der Senator für Arbeit, Frauen und Gesundheit, Jugend und Soziales
- **Hamburg**: Freie und Hansestadt Hamburg, Behörde für Wissenschaft und Gesundheit
- **Hessen**: Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz
- **Mecklenburg-Vorpommern**: Ministerium für Ernährung, Landwirtschaft, Forsten und Fischerei Mecklenburg-Vorpommern
- **Niedersachsen**: Niedersächsisches Ministerium für den ländlichen Raum, Ernährung, Landwirtschaft und Verbraucherschutz
- **Nordrhein-Westfalen**: Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes
- **Rheinland-Pfalz**: Ministerium für Umwelt und Forsten Rheinland-Pfalz
- **Saarland**: Ministerium für Frauen, Arbeit, Gesundheit und Soziales
- **Schleswig-Holstein**: Ministerium für Soziales, Gesundheit und Verbraucherschutz des Landes
- **Thüringen**: Thüringer Ministerium für Soziales, Familie und Gesundheit

Anschriften am Ende des Heftes
1. Zusammenfassung/Summary

- 4

2. Zielsetzung und Organisation

- 7

3. Monitoringplan 2003

- 8
 - 3.1 Lebensmittel- und Stoffauswahl für das Warenkorb-Monitoring
 - 3.2 Lebensmittel- und Stoffauswahl für das Projekt-Monitoring
 - 3.3 Probenahme und Qualität der Analytik

- 9
 - 10

4. Probenzahlen und Herkunft

- 11

5. Ergebnisse des Warenkorb-Monitorings

- 12
 - 5.1 Fleisch
 - 5.2 Getreide und Getreideprodukte
 - 5.3 Blattgemüse
 - 5.4 Sprossgemüse
 - 5.5 Fruchtgemüse
 - 5.6 Gemüseerzeugnisse
 - 5.7 Küchenkräuter

- 16
 - 22
 - 24
 - 26
 - 31
 - 32

6. Ergebnisse des Projekt-Monitorings

- 34
 - 6.1 Beprobungsschwerpunkt Mykotoxine
 - 6.1.1 Projekt M1: Deoxynivalenol in Hartweizengrieß, Teigwaren und Brot
 - 6.1.2 Projekt M2: Deoxynivalenol in Vollkorngrieß, Teigwaren und Brot für Säuglinge und Kleinkinder
 - 6.1.3 Projekt M3: Fumonisine in Maismehl, Maisgrieß und Cornflakes
 - 6.1.4 Projekt M4: Ochratoxin A in getrockneten Weintrauben

- 35
 - 38
 - 39
 - 42

- 43
 - 6.2 Beprobungsschwerpunkt Pflanzenschutzmittel
 - 6.2.1 Projekt PSM1: Pflanzenschutzmittelrückstände in Tafelweintrauben
 - 6.2.2 Projekt PSM2: Rückstände von Benzoyl-Harnstoffen in Tafelweintrauben
 - 6.2.3 Projekt PSM3: Pflanzenschutzmittelrückstände in Olivenöl, Weizenkeimöl und Maiskeimöl
 - 6.2.4 Projekt PSM4: Rückstände von Chlormequat und Mepiquat in Lebensmitteln
 - 6.2.5 Projekt PSM6: Zinnorganische Verbindungen in Binnenfischen

- 43
 - 47
 - 48
 - 49
 - 50

Übersicht der bisher im Monitoring untersuchten Lebensmittel

- 53

Erläuterungen zu den Fachbegriffen

- 55

Adressen der für das Monitoring zuständigen Ministerien

- 59

Übersicht der für das Monitoring zuständigen Untersuchungseinrichtungen der Länder

- 60
Das Lebensmittel-Monitoring (Monitoring) ist ein System wiederholter repräsentativer Messungen und Bewertungen von Gehalten an unerwünschten Stoffen wie Pflanzenschutzmittel, Schwermetalle und andere Kontaminanten in und auf Lebensmitteln.

Aus dem Warenkorb sind folgende Lebensmittel ausgewählt worden:

Lebensmittel tierischer Herkunft
- Hauskaninchenfleisch
- Entenfleisch
- Gänsefleisch

Lebensmittel pflanzlicher Herkunft
- Weizenkörner
- Speisekleie aus Weizen
- Reis
- Weißkohl
- Blumenkohl
- Gemüsepaprika
- Gurke
- Aubergine
- Erbsen tiefgefroren
- Küchenkräuter

In Abhängigkeit von dem zu erwartenden Vorkommen unerwünschter Stoffe wurden die Lebensmittel auf Pflanzenschutzmittelrückstände (Insektizide, Fungizide, Herbizide) und Kontaminanten (persistente Organochlorverbindungen, Moschusverbindungen, Elemente, Nitrat und Mykotoxine) geprüft.

Im Projekt-Monitoring wurden folgende Themen bearbeitet:
- Deoxynivalenol in Hartweizengrieß, Teigwaren und Brot
- Deoxynivalenol in Vollkorn- und Mehrkorn-erzeugnissen für Säuglinge und Kleinkinder
- Fumonisine in Maismehl, Maisgrieß und Cornflakes
- Ochratoxin A in getrockneten Weintrauben
- Pflanzenschutzmittelrückstände in Tafelweintrauben
- Rückstände von Benzoyl-Harnstoffen in Tafelweintrauben
- Pflanzenschutzmittelrückstände in Olivenöl, Weizenkeimöl und Maiskeimöl
- Rückstände von Chloromequat und Mepiquat in verschiedenen Lebensmitteln
- Rückstände in Hering
- Zinnorganische Verbindungen in Binnenfischen

Soweit Vergleiche mit Ergebnissen aus den Monitoringprogrammen der Vorjahre möglich waren, wurden diese bei der Interpretation der diesjährigen Befunde berücksichtigt. Es sei aber ausdrücklich betont, dass sich alle in diesem Bericht getroffenen Aussagen und Bewertungen zur Kontamination der Lebensmittel nur auf die hier im Monitoring untersuchten Stoffe bzw. Stoffgruppen beziehen.

Die wesentlichsten Ergebnisse werden wie folgt zusammengefasst:

Zusammenfassung/Summary

Im Hinblick auf das Vorkommen von Pflanzenschutzmittelrückständen war Gemüsepaprika. In zwei Projekten wurden Tafelweintrauben auf Pflanzenschutzmittelrückstände untersucht, wobei eine relativ starke Belastung nachgewiesen wurde. Der Anteil an Proben mit Gehalten über den jeweiligen Höchstmengen lag mit etwa 15 Prozent auffällig hoch. Dabei zeigte sich, dass Tafelweintrauben aus europäischen Anbaugebieten („Nordhalbkugel”) stärker belastet waren, als solche aus Südamerika und Südafrika („Südhalbkugel”).

2. Die Untersuchungen auf Elemente haben keine Belastungsprobleme aufgezeigt. Überschreitungen der Höchstmengen traten nur vereinzelt, in weniger als einem Prozent der Proben auf.

3. Die im Jahr 2003 auf Nitrat untersuchten Lebensmittel gehörten bis auf frische Küchenkräuter zu den bekanntermaßen nitratarmen Erzeugnissen. Die bei frischen Küchenkräutern aufgetretenen Nitratgehalte von bis zu 8000 mg/kg sind einerseits bemerkenswert, andererseits aber wegen der normalerweise geringen Verzehrsmengen nicht über zu bewerten.

summary

Food monitoring is a system of repeated representative measurements and evaluation of loads of undesired substances, namely plant protection products, heavy metals and other contaminants, in and on foods.

In 2003, food monitoring was split up into two complementary study programmes: examination of foods forming part of a so-called market basket which has been developed on the basis of people’s dietary habits, with the aim to monitor the situation of contaminant loads under representative sampling conditions (market basket monitoring), and examination of specific topical issues in the framework of specific projects (project monitoring). A total of 4927 samples were tested in market basket and project monitoring, of both domestic and foreign origin.

The market basket part of the monitoring programme covered the following selected foods:

Food of animal origin:
• Domestic rabbit meat
• Duck meat
• Goose meat

Food of plant origin:
• Wheat grains
• Wheat bran
• Rice
• White cabbage
• Cauliflower
• Sweet peppers
• Cucumber
• Aubergine
• Peas, deep-frozen
• Culinary herbs

Depending on what undesired substances were expected, the foods were examined for residues of plant protection products (insecticides, fungicides, herbicides) and environmental contaminants (persistent organo-chlorine compounds, elements, nitrate and mycotoxins).

Project monitoring included the following subjects:

• Deoxynivalenol in durum wheat, pasta and bread
• Deoxynivalenol in wholemeal and multigrain products for babies and infants
• Fumonisins in maize flour, maize semolina and cornflakes
• Ochratoxin A in dried grapes
• Residues of plant protection products in table grapes
• Residues of benzyol urea in table grapes
• Residues of plant protection products in olive oil, wheat germ oil, and maize germ oil
• Residues of chlormequat and mepiquat in various food
• Residues in herring
• Organo-tin compounds in freshwater fish

Where comparison with results from previous monitoring programmes was possible, this was considered in the interpretation of this year’s study results. We still point out that all statements and assessments concerning the contamination of food solely refer to the substances and substance groups studied in the framework of this monitoring.

The essential results are summarised as follows:

1. Most foods were slightly contaminated with both residues of plant protection products and organic contaminants. About 54 per cent of samples contained either no, or only traces of such substances. Some foods showed loads of medium degree. About four per cent of samples contained residues of plant protection products or organic contaminants in concentrations above the respective Maximum Residue Level (MRL). This rate was somewhat higher than in the previous years. Sweet pepper carried conspicuous amounts of pesticide residues.

Two projects analysed table grapes for pesticide residues, and found relatively high loads. The share of samples carrying residues above the respective limits was strikingly high with about 15 per cent. Table grapes from European growing areas ("northern sphere") turned out to be more contaminated than such from South America and South Africa ("southern sphere").

2. Analyses for elements did not produce any problems of contamination. Non-compliance with maximum limits was found in less than one per cent of samples.

3. The kinds of food analysed for nitrate in 2003 were such known to contain only tiny amounts of nitrate, apart from culinary herbs. Here, however, nitrate contents were quite high, with up to 8000 mg/kg. Yet, these contents should not be overrated as consumption amounts of culinary herbs are usually small.

4. Contamination with mycotoxins was studied on two foods from the market basket and in four of the monitoring projects. Mycotoxins were found in about 60 per cent of samples. Applying the limit values which have taken legal effect in 2004, non-compliance was found in two per cent of samples for deoxynivalenol in bread, in ten per cent of samples tested for ochratoxin A in dried grapes, and in eleven per cent of samples analysed for fumonisins in maize flour, maize semolina and cornflakes.

The rate of positive findings underlines the need to continue to monitor contamination with mycotoxins and take suitable measures to reduce contamination. A positive judgement in this context is allowed with regard to the very low deoxynivalenol load of baby and infant food.
ZIELSETZUNG UND ORGANISATION

Ziel des Monitorings ist es einerseits, aussagekräftige Daten zur repräsentativen Beschreibung des Vorkommens von unerwünschten Stoffen in Lebensmitteln für die Bundesrepublik Deutschland zu erhalten und andererseits eventuelle Gefährdungspotenziale durch diese Stoffe frühzeitig zu erkennen. Darüber hinaus soll das Monitoring längerfristig dazu dienen, zeitliche Trends in der Belastung der Lebensmittel aufzuzeigen und eine ausreichende Datengrundlage zu schaffen, um Berechnungen zur Aufnahme von unerwünschten Stoffen über die Nahrung durchführen zu können.

Das Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft veröffentlicht jährlich einen von Bund und Ländern gemeinsam erarbeiteten Plan zur Durchführung des Monitorings in Form einer Allgemeinen Verwaltungsvorschrift.

Im Berichtsjahr 2003 wurde das Monitoring nach einem neuen Ansatz zweigeteilt durchgeführt. Einerseits wurden weiterhin Lebensmittel des Warenkorbes berücksichtigt, um die Belastungssituation unter repräsentativen Beprobungsbedingungen weiter verfolgen zu können (Warenkorb-Monitoring), andererseits wurden spezielle aktuelle Fragestellungen zielorientiert in Form von Projekten bearbeitet (Projekt-Monitoring).

Die Zweiteilung des Monitorings, speziell die Einführung des Projekt-Monitorings zur Bearbeitung spezieller Fragestellungen, führt zu einer verbesserten Zeitnähe zwischen lebensmittelrechtlich relevanten Untersuchungen und der Unterrichtung der Öffentlichkeit.

Probenahme und Untersuchung der Lebensmittel erfolgten durch die in den Ländern für die Lebensmittelüberwachung zuständigen Behörden und Laboratorien.

Die Organisation des Monitorings, die Erfassung und Speicherung der Daten und die Auswertung der Monitoring-Ergebnisse sowie deren Berichterstattung oblagen dem Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL), Referat „Lebensmittelmonitoring, Rückstandskontrollprogramme, Datenmeldestelle“.

In einem gesonderten Heft, das beim BVL angefordert werden kann, sind die diesem Bericht zugrunde liegenden Daten in zusammengefasster Form unter dem Titel „Tabellenband zum Bericht über die Monitoring-Ergebnisse des Jahres 2003“ enthalten.

Im Internet sind die bisher erschienenen Berichte zum Monitoring verfügbar unter: www.bvl.bund.de im Menüpunkt Lebensmittel.
MONITORINGPLAN 2003

Im Rahmen einer Allgemeinen Verwaltungs-
vorschrift (AVV-Monitoringplan) wird vom
Bundesministerium für Verbraucherschutz,
Ernährung und Landwirtschaft jährlich ein
detaillierter Plan zur Durchführung des Mo-

monitorings veröffentlicht. Dieser Plan wird
gemeinsam von den für das Monitoring ver-
antwortlichen Einrichtungen des Bundes und
der Länder erarbeitet. Gegenstand dieses
Planes ist die Auswahl der Lebensmittel und
der darin zu untersuchenden Stoffe sowie
Vorgaben zur Methodik der Probenahme und
der Analytik.

Wie einleitend bereits erläutert, wurde das
Monitoring zweigeteilt durchgeführt: Ein Teil
der Lebensmittel wurde weiterhin aus dem
Warenkorb ausgewählt, um die Kontamina-
tionssituation unter repräsentativen Bepro-
bungsvorschriften weiter zu verfolgen. Das
EU-weite 'Koordinierte Überwachungspro-
gramm' (KÜP) zur Sicherung der Einhaltung
der Rückstandshöchstgehalte von Schädlings-
bekämpfungsmitteln ist dabei integraler
Bestandteil des Warenkorb-Monitorings. Im
Rahmen des KÜP werden ausschließlich
Lebensmittel pflanzlicher Herkunft unter-

sucht. Im anderen Teil des Monitorings wur-
den zielorientiert spezielle Fragestellungen in
Form von Projekten bearbeitet.

3.1 LEBENSMITTEL- UND STOFFAUSWAHL FÜR DAS WARENKORB-MONITORING

Aus dem Warenkorb wurden 2003 drei Lebens-

mittel tierischer und zehn Lebensmittel
pflanzlicher Herkunft in die Beprobung einbe-
zogen. Tabelle 3-1 gibt einen Überblick über
die Lebensmittel und die darin untersuchten
Stoffgruppen bzw. Stoffe.

Basierend auf den aktuellen Erkenntnissen zur
potenziellen Belastung der Lebensmittel wur-

des Spektrum der zu analysierenden Stoffe
nochmals erweitert. So wurden z.B. die Proben
von Obst und Gemüse auf etwa 140 verschiede-
ne organische Stoffe untersucht, wobei es sich
in der Mehrzahl um Pflanzenschutzmittel und
deren Abbauprodukte handelt. Dieses Stoff-

spektrum soll es ermöglichen, fundierte Aussa-
gen über die Rückstandssituation dieser
Lebensmittel in Deutschland zu machen.

Lebensmittel und darin untersuchte Stoffgruppen/Stoffe des Warenkorb-Monitorings

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>im Monitoring 1995-2002</th>
<th>Stoffgruppen/Stoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauskaninchen, Fleischteilstück</td>
<td>nein</td>
<td>Pflanzenschutzmittel, persistente Organochlorverbindungen, Bromocyclen, Moschus-Verbindungen, Elemente</td>
</tr>
<tr>
<td>Ente, Fleischteilstück</td>
<td>nein</td>
<td>Pflanzenschutzmittel einschl. Nitrofen, persistente Organochlorverbindungen, Bromocyclen, Moschus-Verbindungen, Elemente</td>
</tr>
<tr>
<td>Gans, Fleischteilstück</td>
<td>nein</td>
<td>Pflanzenschutzmittel einschl. Nitrofen, persistente Organochlorverbindungen, Bromocyclen, Moschus-Verbindungen, Elemente</td>
</tr>
<tr>
<td>Weizenkörner</td>
<td>ja</td>
<td>Pflanzenschutzmittel einschl. Nitrofen, Elemente, Mykotoxine</td>
</tr>
<tr>
<td>Reis</td>
<td>ja</td>
<td>Pflanzenschutzmittel, Elemente, Mykotoxine</td>
</tr>
<tr>
<td>Speisekleie aus Weizen</td>
<td>nein</td>
<td>Elemente, Nitrofen</td>
</tr>
<tr>
<td>Weißkohl</td>
<td>nein</td>
<td>Pflanzenschutzmittel, Elemente, Nitrat</td>
</tr>
</tbody>
</table>
3.2 LEBENSMITTEL- UND STOFFAUSWAHL FÜR DAS PROJEKT-MONITORING

Überblick über die Projekte

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>spezielle Fragestellung</th>
<th>Projektbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartweizengrieß (Durum), Teigwaren, Brot</td>
<td>Deoxynivalenol in Hartweizengrieß, Teigwaren und Brot</td>
<td>M 1</td>
</tr>
<tr>
<td>Getreidebeikost für Säuglinge und Kleinkinder</td>
<td>Deoxynivalenol in Vollkorn- und Mehrkornerzeugnissen für Säuglinge und Kleinkinder</td>
<td>M 2</td>
</tr>
<tr>
<td>Maismehl, Maisgrieß, Cornflakes</td>
<td>Fumonisine in Maismehl, Maisgrieß und Cornflakes</td>
<td>M 3</td>
</tr>
<tr>
<td>Rosinen, Korinthen, Sultaninen</td>
<td>Ochratoxin A in Rosinen, Korinthen und Sultaninen</td>
<td>M 4</td>
</tr>
<tr>
<td>Tafelweintrauben rot/weiß</td>
<td>Pflanzenschutzmittelrückstände in Tafelweintrauben</td>
<td>PSM 1</td>
</tr>
<tr>
<td>Tafelweintrauben rot/weiß</td>
<td>Rückstände von Benzoyl-Harnstoffen in Tafelweintrauben</td>
<td>PSM 2</td>
</tr>
<tr>
<td>Olivenöl, Weizenkeimöl Maiskeimöl</td>
<td>Pflanzenschutzmittelrückstände in Olivenöl, Weizenkeimöl und Maiskeimöl</td>
<td>PSM 3</td>
</tr>
<tr>
<td>Weizenmehl, Maismehl, Haferflocken, Tomate, Gemüsepaprika, Karotte, Kulturpilze, Birnen</td>
<td>Rückstände von Chlormequat und Meipquat in Lebensmitteln</td>
<td>PSM 4</td>
</tr>
</tbody>
</table>

Fortsetzung nächste Seite
Lebensmittel monitoring 2003

Fortsetzung: Überblick über die Projekte

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>spezielle Fragestellung</th>
<th>Projektbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hering</td>
<td>Umfassende Rückstands-untersuchungen in Hering</td>
<td>PSM 5</td>
</tr>
<tr>
<td>Hecht, Plötze (Rotauge), Brachse (Blei/Brasse), Aal, Flussbarsch, Zander</td>
<td>Zinnorganische Verbindungen in Binnenfischen</td>
<td>PSM 6</td>
</tr>
</tbody>
</table>

Tabelle 3-2

3.3 PROBENAHME UND QUALITÄT DER ANALYTIK

Probenanteile Tierisch/Pflanzlich

![Abbildung 4-1](image_url)

Probenanteile nach Herkunft

![Abbildung 4-2](image_url)

<table>
<thead>
<tr>
<th>Probenzahlen (n) und Herkunft der Warenkorb-Lebensmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herkunft</td>
</tr>
<tr>
<td>Lebensmittel</td>
</tr>
<tr>
<td>Hauskaninchen</td>
</tr>
<tr>
<td>Ente</td>
</tr>
<tr>
<td>Gans</td>
</tr>
<tr>
<td>Weizenkörner</td>
</tr>
<tr>
<td>Reis *</td>
</tr>
<tr>
<td>Speisekleie aus Weizen</td>
</tr>
<tr>
<td>Weißkohl</td>
</tr>
<tr>
<td>Blumenkohl</td>
</tr>
<tr>
<td>Gemüsepaprika</td>
</tr>
<tr>
<td>Gurke</td>
</tr>
<tr>
<td>Aubergine</td>
</tr>
<tr>
<td>Erbe tiefgefr.</td>
</tr>
<tr>
<td>Küchenkräuter</td>
</tr>
<tr>
<td>Insgesamt</td>
</tr>
</tbody>
</table>

*Tabelle 4-1

Bei Reis entspricht die Herkunft nicht dem Ursprungsland des Ausgangsproduktes, sondern dem Staat, in dem das Produkt verarbeitet bzw. abgepackt wurde.
ERGEBNISSE DES WARENKORB-MONITORINGS

In diesem Kapitel werden die Ergebnisse zu den im Monitoring 2003 untersuchten Warenkorb-Lebensmitteln vorgestellt.

Alle in diesem Bericht getroffenen Aussagen hinsichtlich der Rückstands- und Kontaminationssituation der Lebensmittel beziehen sich ausschließlich auf die im Monitoring untersuchten Stoffe bzw. Stoffgruppen; weitergehende Schlussfolgerungen/Analogieschlüsse sind nicht zulässig.

5.1 FLEISCH

Hauskaninchenfleisch
Es wurden 228 Proben Kaninchenfleisch auf 25 persistente Organochlorverbindungen, Bromocyclen und Moschusverbindungen sowie auf sechs Elemente untersucht.

• Organische Stoffe

• Elemente
 Die Gehalte von Arsen, Blei, Cadmium, Kupfer, Selen und Zink in Kaninchenfleisch lagen im unteren analytischen Messbereich und waren somit unauffällig.

Fazit
Kaninchenfleisch enthielt einige typische Vertreter der persistenten Organochlorverbindungen in quantifizierbaren Mengen, jedoch lagen die Gehalte zum übergroßen Teil (etwa 99 Prozent der Proben) unterhalb der gesetzlichen Höchstmengen. Allerdings traten häufig Mehrfachbefunde auf.
Ergebnisse des Warenkorb-Monitorings • Entenfleisch

Entenfleisch
Es wurden 246 Entenfleischproben auf das Vorkommen von 26 persistenten Organochlorverbindungen, Nitrofen, Bromocyclen, Moschusverbindungen und sechs Elementen geprüft. Im Rahmen dieser Untersuchungen sollten deutsche, französische und ungarische Herkünfte im Hinblick auf die Kontamination mit unerwünschten Stoffen verglichen werden.

• Organische Stoffe
Ohne messbare Gehalte war ein Probenanteil von 56,7 Prozent. Auffälligkeiten gab es nur bei einigen Organochlorverbindungen (siehe Tabelle 5-1). In 28,9 Prozent der untersuchten Entenfleischproben wurden p,p'-DDE-Gehalte quantifiziert, die sich allerdings ausschließlich im Konzentrationsbereich unterhalb der gesetzlichen Höchstmengen bewegten. Gehalte über den Höchstmengen wurden in Probenanteilen von jeweils weniger als einem Prozent für die Substanzen PCB 138, PCB 153, PCB 180, beta-HCH und Heptachlor (Summe) festgestellt. Insgesamt ergibt sich für Entenfleisch eine Überschreitungquote der Höchstmengen von 1,6 Prozent, die als gering einzustufen ist.

Für einige Organochlorverbindungen zeigten sich herkunftsbedingte Unterschiede. Gehalte des DDT-Metaboliten p,p'-DDE wurden häufiger und in höheren Konzentrationen im ungarischen als im deutschen und französischen Entenfleisch festgestellt. Lindan- und PCB 153-Gehalte traten häufiger in deutscher als in ausländischer Ware auf; dieser Sachverhalt ist in der Tabelle 5-1 zahlenmäßig dargestellt.

In 38 Prozent der Proben wurden pro Probe zwei und mehr Stoffe in quantifizierbaren Mengen gefunden, wobei das Maximum bei 15 Stoffen lag.

• Elemente
Die Elementgehalte lagen allgemein auf niedrigem Niveau. Lediglich zwei Bleigehalte und ein Cadmiumgehalt überschritten die Höchstmenge. Ein Vergleich der Herkünfte ergab geringfügige Unterschiede auf sehr geringem Konzentrationsniveau, in der Nähe der Bestimmungsgrenzen (siehe Abbildungen 5-1 und 5-2).

Fazit

Häufig quantifizierte Stoffe in Entenfleisch (nach Herkunft)

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Deutschland</th>
<th>Frankreich</th>
<th>Ungarn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>relativ %</td>
<td>Anzahl</td>
</tr>
<tr>
<td>DDT-Summe*</td>
<td>23</td>
<td>27,7</td>
<td>16</td>
</tr>
<tr>
<td>Lindan</td>
<td>22</td>
<td>26,5</td>
<td>17</td>
</tr>
<tr>
<td>PCB 153</td>
<td>25</td>
<td>30,1</td>
<td>14</td>
</tr>
</tbody>
</table>

* Berechnet aus den DDT-Isomeren und Metaboliten

Tabelle 5-1
Mittelwerte und 90. Perzentile der Bleigehalte in Enten- und Gänsefleisch nach Herkunftsstaaten

Abbildung 5-1

Mittelwerte und 90. Perzentile der Cadmiumgehalte in Enten- und Gänsefleisch nach Herkunftsstaaten

Abbildung 5-2
Ergebnisse des Warenkorb-Monitorings • Gänsefleisch

Gänsefleisch

Organische Stoffe

Der Einfluss der Herkunft auf die Analysenbefunde ist in der Tabelle 5-2 zusammengesetzt. Es zeigt ein ähnliches Bild wie im Entenfleisch. DDT-Gehalte traten in polnischen und ungarischen Proben mit 52,1 bzw. 52,6 Prozent deutlich häufiger als in einheimischer Ware mit 23,7 Prozent auf. Dagegen enthielten deutsche Produkte in einem größeren Anteil HCB- und PCB 153-Gehalte. In 39 Prozent der Proben traten Mehrfachbefunde auf; in Extremfällen waren es zwölf Rückstände in einer Probe.

Elemente
Die Elementgehalte befanden sich zum überwiegenden Teil im unteren Konzentrationsbereich. Festzustellen ist aber, wie der Abbildung 5-2 zu entnehmen ist, dass die Cadmiumgehalte im deutschen Gänsefleisch deutlich über denen importierter Tiere lagen. Vier Cadmiumgehalte und ein Bleigehalt überschritten die Höchstmenge.

Fazit

Häufig quantifizierte Stoffe in Gänsefleisch (nach Herkunft)

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Deutschland</th>
<th>Polen</th>
<th>Ungarn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>relativ %</td>
<td>Anzahl</td>
</tr>
<tr>
<td>DDT, Summe*</td>
<td>14</td>
<td>23,7</td>
<td>49</td>
</tr>
<tr>
<td>HCB</td>
<td>20</td>
<td>33,9</td>
<td>19</td>
</tr>
<tr>
<td>PCB 153</td>
<td>19</td>
<td>32,2</td>
<td>11</td>
</tr>
</tbody>
</table>

Tabelle 5-2

* Berechnet aus den DDT-Isomeren und Metaboliten
5.2 GETREIDE UND GETREIDEPRODUKTE

Weizenkörner

Pflanzenschutzmittel

Pflanzenschutzmittelrückstände in Weizen im Jahresvergleich

Abbildung 5-3
Elemente

Die Gehalte aller im Jahr 2003 in das Untersuchungsspektrum einbezogenen Elemente werden in Abbildung 5-4 dargestellt. Im Jahresvergleich ist die Situation bei den Schwermetallen Blei und Cadmium relativ konstant geblieben, wie Abbildung 5-5 verdeutlicht. Gehalte über den Höchstmengen von 0,2 mg/kg wurden lediglich in drei Proben festgestellt (2,7 Prozent). Bei Kupfer wurde die Höchstmenge von 10 mg/kg nicht überschritten.

Mittelwerte und 90. Perzentile der Element-Gehalte in Weizenkörnern im Jahr 2003

<table>
<thead>
<tr>
<th>Element</th>
<th>Gehalte (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsen</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Blei</td>
<td>0,05</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0,07</td>
</tr>
<tr>
<td>Selen</td>
<td>0,10</td>
</tr>
<tr>
<td>Kupfer</td>
<td>0,10</td>
</tr>
<tr>
<td>Zink</td>
<td>0,17</td>
</tr>
</tbody>
</table>

Abbildung 5-4

Mittlere Blei- und Cadmium-Gehalte in Weizenkörnern

<table>
<thead>
<tr>
<th>Gehalte (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
</tr>
<tr>
<td>0,03</td>
</tr>
<tr>
<td>0,05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Blei</th>
<th>Cadmium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>0,03</td>
<td>0,05</td>
</tr>
<tr>
<td>1998</td>
<td>0,04</td>
<td>0,06</td>
</tr>
<tr>
<td>1999</td>
<td>0,02</td>
<td>0,03</td>
</tr>
<tr>
<td>2003</td>
<td>0,01</td>
<td>0,04</td>
</tr>
</tbody>
</table>

Abbildung 5-5
Mykotoxine

Fazit

Mittelwerte und 90. Perzentile der Gehalte an den Mykotoxinen DON, OTA und ZEA in Weizenkörnern im Jahr 2003

![Abbildung 5-6](image-url)

• Pflanzenschutzmittel

• Elemente
 Die Gehalte aller im Jahr 2003 bestimmten Elemente sind in Abbildung 5-9 dargestellt. Die Schwermetalle Blei, Cadmium und Quecksilber lagen mit ihren Gehalten zum überwiegenden Teil unter 0,1 mg/kg (vgl. Abbildung 5-9). Die Höchstmengen von 0,2 mg/kg für Blei und Cadmium sowie 10 mg/kg für Kupfer wurden deutlich unterschritten. Der Vergleich der Jahre 2000 und 2003 zeigt, dass in allen Reisarten ein ähnliches Verteilungsmuster der Elemente vorlag.

• Mykotoxine
 Die Untersuchung auf Deoxynivalenol (DON) und Ochratoxin A (OTA) zeigte, dass Reis sowohl von der Häufigkeit des Vorkommens als auch von der Höhe der Gehalte nur gering mit Mykotoxinen kontaminiert war. Lediglich drei bzw. vier Prozent aller Proben enthielten messbare Gehalte bis maximal 0,6 µg/kg an OTA bzw. 87,6 µg/kg an DON. Diese lagen weit unter der Höchstmenge von 5 µg/kg für OTA und der ab 2004 geltenden Höchstmenge von 500 µg/kg für DON.

Fazit
Pflanzenschutzmittelrückstände in Reis im Jahresvergleich

Abbildung 5-8

Mittelwerte und 90. Perzentile der Element-Gehalte in Reis im Jahre 2003

Abbildung 5-9
Ergebnisse des Warenkorb-Monitorings • Speisekleie aus Weizen

Speisekleie aus Weizen

• Nitrofen
Nitrofen wurde in keiner Probe in messbaren Konzentrationen festgestellt.

• Schwermetalle
Die Gehalte an Blei und Cadmium sind in Abbildung 5-10 dargestellt.

Die Blei- und Cadmiumgehalte waren in Speisekleie etwas höher als in den Weizenkörnern (s. Abb. 5-4 und 5-10). Ursache sind die höheren Schwermetallgehalte in den Randschichten des Getreidekorns, aus denen die Speisekleie hergestellt wird.

Zur Beurteilung der Bleigehalte in Speisekleie liegt keine gesonderte Höchstmenge vor. Würde hilfsweise der Grenzwert für Weizenkörner zugrunde gelegt, lägen die Blei-Gehalte in vier Proben (1,7 Prozent) oberhalb der Höchstmenge von 0,2 mg/kg. Die Cadmium-Gehalte lagen im mittleren Bereich, lediglich drei Proben überschritten die Höchstmenge von 0,2 mg/kg.

Fazit

Mittelwerte und 90. Perzentile der Gehalte an Blei und Cadmium in Speisekleie aus Weizen

Abbildung 5-10
5.3 BLATTGEMÜSE

Weißkohl
Weißkohl gehört zu den häufig verzehrten Kohlarten. Im Monitoring wurden 100 Proben auf 74 Pflanzenschutzmittelrückstände, sechs Elemente sowie Nitrat untersucht. 85 Prozent der Proben kamen aus Deutschland und neun Prozent aus den Niederlanden.

• Pflanzenschutzmittel
Mehr als die Hälfte (54 Prozent) der auf Pflanzenschutzmittel untersuchten Weißkohlproben waren rückstandsfrei. Nur vier Prozent der Proben enthielten Rückstände von mehreren Pflanzenschutzmitteln, dabei in einer Probe maximal drei. Häufig, d.h. in mehr als zehn Prozent der Proben, wurde lediglich Schwefelkohlenstoff gefunden, der in etwa der Hälfte der Proben (47,8 Prozent) quantifiziert werden konnte. Schwefelkohlenstoff ist die Substanz, die im Monitoring als Summenparameter stellvertretend für die Gruppe aller fungiziden Dithiocarbamate (DTC) analytisch bestimmt wird. Da Kohlgemüse und somit auch Weißkohl selbst schwefelhaltige Inhaltsstoffe besitzen, die während der Rückstandsanalyse zu Schwefelkohlenstoff umgewandelt und freigesetzt werden, kann nicht eindeutig entschieden werden, ob der gemessene Schwefelkohlenstoff vollständig aus einer Anwendung von DTC stammt oder in geringem Umfang auch biogenen Ursprungs ist. In zwölf Prozent der Proben lagen die gemessenen Gehalte über der Höchstmenge der DTC. Dabei wurde bereits pauschal ein Blindwert von 0,05 mg/kg für die schwefelhaltigen Inhaltsstoffe berücksichtigt. Diese Quote ist zwar immer noch hoch, sollte aber unter Berücksichtigung des genannten Sachverhalts nicht überbewertet werden, da der Korrekturwert von 0,05 mg/kg nicht verifiziert ist und somit u.U. nicht den tatsächlichen Gehalt pflanzlicher Inhaltsstoffe ausreichend widerspiegelt.

Abbildung 5-11
Ergebnisse des Warenkorb-Monitorings • Weißkohl

• **Elemente**

Die Höchstmengen von 0,3 mg/kg für Blei und 0,05 mg/kg für Cadmium sowie 20 mg/kg für Kupfer wurden deutlich unterschritten. Der Vergleich der Jahre 2000 und 2003 zeigt, dass in diesen Kohlgemüsen ein ähnliches Verteilungsmuster der Elemente vorliegt, wobei Weißkohl wesentlich weniger Cadmium enthielt.

• **Nitrat**

Fazit

Abgesehen von der besonderen Problematik der fungiziden Dithiocarbamate war Weißkohl mit Pflanzenschutzmittelrückständen und den Schwermetallen Blei, Cadmium und Kupfer nur sehr gering belastet. Der Nitratgehalt lag im mittleren Bereich aller bisher untersuchten Kohlarten.

Mittlere Element-Gehalte in verschiedenen Kohlarten

![Gehalte (mg/kg) logarithmische Darstellung](Abbildung 5-12)

Vergleich der mittleren Nitrat-Gehalte in Kohlarten

![Gehalte (mg/kg)](Abbildung 5-13)
5.4 SPROSSEGEMÜSE

Blumenkohl

• Pflanzenschutzmittel

Der Vergleich mit den Ergebnissen aus dem Jahr 1999 (siehe Abbildung 5-14) zeigt, dass Blumenkohl nur gering mit Rückständen von Pflanzenschutzmitteln belastet war und der Anteil mit quantifizierbaren Rückständen erheblich gesunken ist.

• Elemente
Die Gehalte der im Blumenkohl bestimmten Elemente sind den Untersuchungsergebnissen aus dem Jahr 1999 sehr ähnlich, wie Abbildung 5-15 zeigt. Positiv fällt die Verringerung der Bleigehalte auf. Die Höchstmengen von 0,3 mg/kg für Blei und 0,05 mg/kg für Cadmium sowie 20 mg/kg für Kupfer wurden bei Blumenkohl deutlich unterschritten.

• Nitrat
Fazit

• Pflanzenschutzmittel
am häufigsten gefunden. Mehrfachrückstände wurden in annähernd 40 Prozent der Proben festgestellt. In mehr als zehn Prozent der Proben wurden fünf und mehr Stoffe gleichzeitig gemessen. Tabelle 5-3 gibt die Zahlen im Einzelnen wieder.

• **Elemente**

• **Nitrat**
Wie andere Fruchtgemüse ist Paprika im allgemeinen gering mit Nitrat kontaminiert. Der mittlere Nitratgehalt lag bei 53 mg/kg, der höchste bei 370 mg/kg. Das Kontaminationsniveau hat sich somit 2003 gegenüber 1999 verringert.

Fazit

Pflanzenschutzmittelrückstände in Paprika 1999 und 2003 sowie im Vergleich der Herkünfte

<table>
<thead>
<tr>
<th>Anzahl der Rückstände pro Probe</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoffe: 85</td>
<td></td>
</tr>
<tr>
<td>Probenzahl (gesamt 307)</td>
<td>128</td>
<td>65</td>
<td>40</td>
<td>21</td>
<td>20</td>
<td>18</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anteil in Prozent</td>
<td>41,7</td>
<td>21,2</td>
<td>13,0</td>
<td>6,8</td>
<td>6,5</td>
<td>5,9</td>
<td>2,6</td>
<td>1,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Tabelle 5-3

[Abbildung 5-17]
Gurke

• **Pflanzenschutzmittel**

Bei der Differenzierung nach Herkunftsländern zeigt sich, dass in spanischen Proben am häufigsten und in niederländischen am seltensten Rückstände quantifiziert wurden. 10,2 Prozent der spanischen und 2,7 Prozent der deutschen Proben wiesen Gehalte über den Höchst mengen auf. Bei den niederländischen Gurken und denen anderer Herkunft trafen keine Überschreitungen auf. Mehrfachrückstände waren bei Gurken sehr viel seltener als bei Gemüsepaprika zu beobachten (siehe Tabelle 5-4).

• **Elemente**

• **Nitrat**

Die Nitratgehalte der untersuchten Gurken lagen im Mittel bei 225 mg/kg und damit im mittleren Bereich.
Mehrfachrückstände von Pflanzenschutzmitteln in Gurken

<table>
<thead>
<tr>
<th>Stoffe: 76</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probenzahl (gesamt 244)</td>
<td>152</td>
<td>53</td>
<td>22</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Anteil in Prozent</td>
<td>62,3</td>
<td>21,2</td>
<td>9,0</td>
<td>3,3</td>
<td>2,5</td>
<td>0</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Tabelle 5-4

Aubergine

• Pflanzenschutzmittel

• Elemente
 Die für Blei, Cadmium und Kupfer festgelegten Höchstmengen (0,10 mg/kg, 0,05 mg/kg bzw. 20,0 mg/kg) wurden in keinem Falle überschritten. Die Gehalte an Arsen, Selen und Zink, für die es keine Höchstmengen gibt, waren ebenfalls nicht auffällig. Für Blei und Selen werden keine Mittelwerte angegeben, da zu wenige Messwerte vorlagen (in weniger als zehn Prozent der Proben konnten diese Elemente überhaupt nachgewiesen werden).

• Nitrat
 Die Nitratgehalte von Auberginen lagen mit durchschnittlich 354 mg/kg im mittleren Bereich.

Fazit

Die vorliegenden Untersuchungen zeigen, dass Auberginen hinsichtlich der Belastung mit Pflanzenschutzmitteln und Elementen als unproblematisch einzustufen sind. Der Nitratgehalt bewegt sich auf mittlerem Niveau.
Pflanzenschutzmittelrückstände in verschiedenen Gemüsearten

Abbildung 5-18

Mittelwerte und 90. Perzentile der Gehalte an Elementen in Aubergine

Abbildung 5-19
5.6 Gemüseerzeugnisse

Erbosen, tiefgefroren

• Pflanzenschutzmittel

Höchstmengenüberschreitungen traten bei Pflanzenschutzmitteln nicht auf. In sieben Proben wurden zwei, in zwei Proben drei und in einer Probe fünf Wirkstoffe gleichzeitig nachgewiesen.

• Schwermetalle

• Nitrat
Erbsen gehören zu den Gemüsearten mit niedrigen Nitratgehalten. Der Mittelwert wurde mit 21,1 mg/kg bestimmt. Der Vergleich des Nitratgehaltes mit den Gehalten anderer Gemüsearten (siehe Abbildungen 5-13 und 5-16) bestätigt diese Aussage.

Fazit
Tiefgefrorene Erbsen sind mit den hier untersuchten unerwünschten Stoffen gering oder sehr gering belastet.

Vergleich der Belastung tiefgefrorener Erbsen mit Pflanzenschutzmitteln

5.7 KÜCHENKRÄUTER

Elemente

Die Bleigehalte lagen auf einem niedrigen bis mittleren Niveau. Die Höchstmenge für Cadmium ist auf 0,2 mg/kg festgesetzt. Sie wurde in vier Proben (1,6 Prozent) überschritten. Zwei Proben Bohnenkraut und je eine von Schnittlauch und Dill enthielten mehr als 0,2 mg Cadmium je kg; Mittelwert und 90. Perzentil sind bei Dill etwas höher als bei den anderen Kräutern.

Nitrat

In Basilikum und Bohnenkraut wurden die höchsten Nitratgehalte gemessen. Beide sind aufgrund dieser Ergebnisse in die Kategorie der nitratreichen Lebensmittel einzuordnen. Schnittlauch wies die niedrigsten Nitratgehalte auf (siehe Abbildung 5-23).

Für Nitrat in Kräutern gibt es keine Höchstmengen. Für eine Reihe von Blattgemüsen (Spinat, Salate) sind je nach Jahreszeit 2000-4500 mg/kg als Grenzwert festgesetzt. Daran gemessen sind Kräuter relativ nitratreich, wobei bezüglich einer Bewertung die sehr geringen Verzehrmengen zu berücksichtigen sind.

Fazit

Die Gehalte von Elementen lagen im mittleren, die von Nitrat im für nitratreiche Gemüse typischen Konzentrationsbereich.

Mittelwerte und 90. Perzentile der Bleigehalte in den verschiedenen Küchenkräutern

![Abbildung 5-21](image-url)
Mittelwerte und 90. Perzentile der Cadmiumgehalte in den verschiedenen Küchenkräutern

Abbildung 5-22

Mittelwerte und 90. Perzentile der Nitratgehalte in den verschiedenen Küchenkräutern

Abbildung 5-23

Neben den im Warenkorb-Monitoring erhobenen und im Kapitel 5.2 berichteten Befunden zur Mykotoxinbelastung wurde diese in den folgenden vier Monitoring-Projekten an ausgewählten Lebensmitteln vertiefend untersucht.

6.1 BEPROBUNGSSCHWERPUNKT MYKOTOXINE

Neben den im Warenkorb-Monitoring erhobenen und im Kapitel 5.2 berichteten Befunden zur Mykotoxinbelastung wurde diese in den folgenden vier Monitoring-Projekten an ausgewählten Lebensmitteln vertiefend untersucht.

Mykotoxine

6.1.1 Projekt M1: Deoxynivalenol in Hartweizengrieß, Teigwaren und Brot

Federführendes Amt: CVUA Sigmaringen
Teilnehmende Ämter: CVUA Stuttgart, ILAT Berlin, LVL Brandenburg (Frankfurt/Oder), LVL Brandenburg (Potsdam), LAVES Niedersachsen LI Braunschweig, LUA Rheinland-Pfalz ILC Trier und LUA Dresden

Als Beurteilungsgrundlage der Gehalte von DON dienten die in Deutschland nach der Mykotoxin-Höchstmengenverordnung (MHmV) ab 2004 geltenden Höchstmengen für Getreide und Getreideprodukte in Höhe von 500 µg/kg und für Brot in Höhe von 350 µg/kg. Für Hartweizenprodukte und Teigwaren wurde hilfsweise die in der EU geplante Höchstmenge von 750 µg/kg eingesetzt.

DON-Gehalte in den Projektproben Hartweizengrieß und Teigwaren

![Abbildung 6-1](image-url)

Abbildung 6-1: DON-Gehalte (µg/kg) in Hartweizengrieß und Teigwaren
Brot

Die mittleren DON-Gehalte aller untersuchten Brote lagen relativ niedrig. Ungefähr dreiviertel aller Brotproben (n=181) waren nicht oder nur gering belastet (Gehalte bis maximal 100 µg/kg). Einzelne Proben wiesen deutlich höhere Gehalte auf (siehe Abbildung 6-2), der Maximalwert in einer Brotprobe lag bei 577 µg/kg.

Die Aufteilung der Ergebnisse nach Brotsorten („Vollkornbrot“, „Mischbrot“) ist in Abbildung 6-3 dargestellt.

DON in Brot, Verteilung der Proben

Abbildung 6-2

Fazit

Der Verzehr von Brot und Teigwaren führt bei Hochverzehren zu Aufnahmemengen an DON, die im Bereich von 11,3 bis 34,7 Prozent des TDI liegen.

Die Belastung der Lebensmittel mit Fusarientoxinen ist weiterhin mit Aufmerksamkeit zu verfolgen.
Aufnahmeabschätzung

Eine mittlere Mykotoxinbelastung von Teigwaren zugrunde gelegt, ergibt eine Aufnahmeabschätzung eine Auslastung der tolerierbaren täglichen Aufnahmemenge (TDI - engl. Tolerable Daily Intake) von 11,3 bis 29,2 Prozent (s. Tabelle 6-1).

Auf Basis der mittlere DON-Belastung von Brot ergibt die Abschätzung eine Auslastung des TDI von 16,1 bis 34,7 Prozent (s. Tabelle 6-2).

Aufnahmeabschätzungen

<table>
<thead>
<tr>
<th></th>
<th>Kinder</th>
<th>Frauen</th>
<th>Männer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körpergewicht</td>
<td>30 kg</td>
<td>60 kg</td>
<td>75 kg</td>
</tr>
<tr>
<td>Verzehrmengen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teigwaren/Tag</td>
<td>60 g</td>
<td>70 g</td>
<td>80 g</td>
</tr>
<tr>
<td>Brot/Tag</td>
<td>127 g</td>
<td>161 g</td>
<td>186 g</td>
</tr>
<tr>
<td>TDI-Wert für DON: 1 mg/kg Körpergewicht</td>
<td>6.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 SCOOP-Bericht „Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake“ (Task 3.2.10), Internet: http://europa.eu.int/comm/food/fs/scoop/task3210.pdf
In der Säuglings- und Kleinkinderernährung besitzt Getreide als Nahrungsbestandteil eine große Bedeutung, wobei in den letzten Jahren die Belastung des Getreides mit Fusarien- toxinen zunehmend in den Mittelpunkt des Interesses gerückt ist. Bei der toxikologischen Betrachtung stellen Säuglinge und Kleinkinder eine besondere Risikogruppe dar.

214 Proben Getreidebeikost, entnommen aus dem Groß- und Einzelhandel sowie bei Herstellern, wurden auf Deoxynivalenol (DON) untersucht. Die Ergebnisse sind positiv zu bewerten; nur 4 Proben (oder 1,9 Prozent) enthielten mehr als 100 µg DON/kg Lebensmittel. Diese Konzentration wurde im Frühjahr 2004 in Deutschland als Höchstmenge für Getreideerzeugnisse, die zur Herstellung von Säuglings- und Kleinkindernahrung verwendet werden, gesetzlich festgelegt. Die höchsten Gehalte wurden mit 194 µg/kg bzw. 277 µg/kg in zwei Proben Löffelbiskuit eines italienischen Herstellers festgestellt; außerdem wiesen eine Probe Haferflocken und eine Vollkorn-Kindernahrung DON-Gehalte über 100 µg/kg auf. In 77 Prozent der Proben war DON nicht nachweisbar bzw. nicht bestimbar (siehe Abbildung 6-4 sowie Tabelle 6-3).

Fazit
Im Untersuchungszeitraum war Säuglings- und Kleinkindernahrung mit DON gering kontaminiert. Auf die Belastungssituation von Getreidebeikost in einem „typischen Fusarienjahr“ (gekennzeichnet durch eine durch nasses Wetter begünstigte hohe Fusarienbelastung) können die Ergebnisse jedoch nicht übertragen werden.
Kontamination von Säuglings- und Kleinkindernahrung mit DON

Abbildung 6-4

Statistische Maßzahlen für DON in Säuglings- und Kleinkindernahrung (Angaben in µg/kg)

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>Mittelwert</th>
<th>90. Perz.</th>
<th>95. Perz.</th>
<th>Max.</th>
<th>Höchstmenge</th>
<th>n > HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DON</td>
<td>15</td>
<td>23,6</td>
<td>51</td>
<td>80</td>
<td>277</td>
<td>100</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabelle 6-3

6.1.3 Projekt M3: Fumonisine in Maismehl, Maisgrieß und Cornflakes

Federführendes Amt: LI Oldenburg
Teilnehmende Ämter: CVUA Sigmaringen, LGL Oberschleißheim, SUA Kassel, CI Duisburg, IfLU Moers

Das Scientific Committee for Food (SCF) der Europäischen Kommission leitete 2003 einen TDI-Wert für die Fumonisine in Höhe von 2 µg/kg Körpergewicht/Tag ab. Nationale Höchstmengen seit Februar 2004 für die Summe der Fumonisine B1 und B2 für Maismehl und Maisgrieß sind 500 µg/kg und für Cornflakes 100 µg/kg; für alle drei Lebensmittel beträgt die DON-Höchstmenge 500 µg/kg.
Maismehl
Ein Großteil der Proben enthielt zwar keine oder nur geringe Fumonisinegehalte, jedoch übersteigt das 90. Perzentil die Höchstmenge um fast das Vierfache. Gemessen am Mittelwert (490 µg/kg), Median (40 µg/kg) sowie 90. Perzentil (1943 µg/kg) war Maismehl von allen drei Erzeugnissen am stärksten mit Fumonisinen kontaminiert (siehe Abbildung 6-5). In 15 Proben lagen die Gehalte über der nationalen Höchstmenge; der Maximalwert betrug 4280 µg/kg. Für DON im Maismehl liegen Mittelwert (293 g/kg), Median (205 µg/kg) und 90. Perzentil (641 µg/kg) im gleichen Größenbereich wie für Maisgrieß; das Maximum beträgt 876 µg/kg (siehe Abbildung 6-6). Gemessen an den Höchstmengen wiesen vier Proben zu hohe DON-Gehalte auf, in zwei Proben lagen sowohl Fumonisine als auch Deoxynivalenol in überhöhten Konzentrationen vor.

Maisgrieß
Auch hier waren die meisten Proben wenig oder nicht mit Fumonisinen kontaminiert. Das 90. Perzentil von Fumonisin B1 + B2 (990 µg/kg) überschreitet die Höchstmenge um das Doppelte. Auch Mittelwert (248 µg/kg) und Median (25 µg/kg) für Fumonisin B1 + B2 des Maisgrießes waren niedriger als bei Maismehl. In einer Maisgrießprobe wurde jedoch mit 4364 µg/kg Fumonisin B1 + B2 der Maximalwert aller Proben gemessen (siehe Abbildung 6-5). Die Fumonisin-Höchstmenge wurde von zehn Proben überschritten. Auch für DON wurde in einem Maisgrieß mit 2160 µg/kg der höchste Gehalt aller Projektproben gemessen. Mittelwert (234 µg/kg), Median (102 µg/kg) und 90. Perzentil (570 µg/kg) des DON liegen niedriger als für Maismehl (siehe Abbildung 6-6). In drei Proben überstieg die DON-Gehalt die nationale Höchstmenge und eine Probe enthielt sowohl Fumonisine als auch DON in überhöhten Konzentrationen.

Cornflakes
Cornflakes wiesen gegenüber Maismehl und Maisgrieß mit Abstand die geringsten Fumonisine- und auch DON-Gehalte auf (siehe Abbildungen 6-5, 6-6). Zudem waren hier die weitaus meisten Proben nicht oder kaum belastet. Die Maxima betrugen 523 µg/kg Fumonisin B1 + B2 sowie 688 µg/kg DON. Fumonisinegehalte oberhalb der Höchstmenge wurden in zehn Proben gemessen. Mittelwert (52 µg/kg) und 90. Perzentil (124 µg/kg) von Fumonisin B1 + B2 liegen deutlich unterhalb derjenigen von Maismehl und Maisgrieß. Für DON sind diese Werte mit 70 µg/kg bzw. 146 µg/kg/kj zwar höher als für die Fumonisine aber von allen drei Produkten am niedrigsten. Auch die Medianwerte sind sowohl für die Fumonisine (25 µg/kg) als auch für DON (17 µg/kg) gering. Verglichen mit den jeweiligen Höchstmengen enthielt eine Probe überhöhte Gehalte an Fumonisinen und DON.

Fazit
Ergebnisse des Projekt-Monitorings • Beprobungsschwerpunkt Mykotoxine • Projekt M3

Kontamination von Maismehl, Maisgrieß und Cornflakes mit Fumonisin (Summe der Fumonisine B1 + B2)

Abbildung 6-5

Kontamination von Maismehl, Maisgrieß und Cornflakes mit DON

Abbildung 6-6
6.1.4 Projekt M4: Ochratoxin A in getrockneten Weintrauben

Die Sammelbezeichnung „Rosinen“ umfasst Traubenrosinen (kernhaltig, großbeerig), Sultaninen (kernlos, großbeereig, hellgelb, größer als Korinthen und kleiner als Traubenrosinen) und Korinthen (kernlos, kleinbeereig, violett-schwarze Farbe).

Untersucht wurden 293 Proben auf Ochratoxin A (OTA), davon 65 Prozent Sultaninen-, 21 Prozent Korinthen- und 14 Prozent Rosinen-Proben. Zehn Prozent aller untersuchten Proben lagen über der festgesetzten Höchstmenge von 10 µg/kg. In Sultaninen fanden sich in 92 Prozent der untersuchten Proben quantifizierbare Gehalte, in Korinthen in 78 Prozent und in Rosinen in 60 Prozent der Proben.

Bei Sultaninen reichten die OTA-Gehalte bis zum Dreifachen der Höchstmenge von 10 µg/kg, bei Korinthen lagen die Maxima bei dem Sechsfachen. Im Gegensatz dazu gab es bei Rosinen nur knappe Überschreitungen der Höchstmenge.

Bei Sultaninen überschritten lediglich rund zwei Prozent der Proben die OTA-Höchstmenge. Auffälliger ist dies bei Sultaninen (elf Prozent) und Korinthen (15 Prozent).

Fazit

Getrocknete Weintrauben waren zu etwa einem Drittel mit Ochratoxin A kontaminiert, in jeder zehnten Probe wurden OTA-Gehalte über der Höchstmenge von 10 µg/kg gefunden.

Untersuchungsergebnisse von OTA in getrockneten Weintrauben

<table>
<thead>
<tr>
<th>Getrocknete Weintrauben</th>
<th>Probenzahl</th>
<th>Anteil %</th>
<th>Median (µg/kg)</th>
<th>Mittelwert (µg/kg)</th>
<th>Höchstwert-überschreitung (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korinthen</td>
<td>62</td>
<td>21,1</td>
<td>1,2</td>
<td>5,54</td>
<td>9 (15)</td>
</tr>
<tr>
<td>Sultaninen</td>
<td>189</td>
<td>64,5</td>
<td>2,5</td>
<td>4,30</td>
<td>20 (11)</td>
</tr>
<tr>
<td>Rosinen</td>
<td>42</td>
<td>14,3</td>
<td>0,3</td>
<td>1,48</td>
<td>1 (2)</td>
</tr>
<tr>
<td>alle Proben</td>
<td>293</td>
<td>100</td>
<td></td>
<td>4,16</td>
<td>30 (10)</td>
</tr>
</tbody>
</table>

Tabelle 6-4

Kontamination von Rosinen, Sultaninen und Korinthen mit Ochratoxin A

![Anteile (in %)](image_url)

Abbildung 6-7
6.2 BEPROBUNGSSCHWERPUNKT PFLANZENSCHUTZMITTEL

Durch Integration von Pflanzenschutzmittel-Projekten in das Monitoring sollte die Belastung einiger Lebensmittel mit Pflanzenschutzmittelrückständen gezielt untersucht werden. Die Ergebnisse dieser fünf Projekte werden im Folgenden dargestellt.

6.2.1 Projekt PSM1: Pflanzenschutzmittelrückstände in Tafelweintrauben und Projekt PSM2: Rückstände von Benzoyl-Harnstoffen in Tafelweintrauben

Federführende Ämter: CVUA Stuttgart (PSM2), CLUA Münster (PSM1)
Teilnehmende Ämter: CVUA Sigmaringen, LGL Erlangen, STUA Hessen, LUGV Leipzig, Chemisches und Geowissenschaftliches Institut der Städte Essen und Oberhausen

Insgesamt wurden 476 Proben Tafelweintrauben auf ein Rückstandsspektrum von jeweils zwischen 100 und 340 Pflanzenschutzmittelwirkstoffen untersucht. Davon waren 255 Proben (53 Prozent) europäischer Herkunft, 212 Proben (45 Prozent) stammten aus Anbaugebieten außerhalb Europas und neun Proben (zwei Prozent) waren unbekannter Herkunft.

Nachstehende Tabelle 6-5 zeigt zusammenfassend die Untersuchungsergebnisse für Tafelweintrauben entsprechend ihrer Herkunftsverteilung. Insgesamt wurden in 18 Prozent der Trauben europäischer Herkunft Höchstmengenüberschreitungen festgestellt. Bemerkenswert ist, dass Trauben mit Herkunft Brasilien sowie Südafrika/Afrika, die vor allem im Winter und Frühjahr angeboten werden, in keinem Fall zu beanstanden waren. Lediglich eine von 29 Traubenproben argentinischer Herkunft (drei Prozent) sowie drei von 45 Traubenproben aus chilenischem Anbau (sieben Prozent) wiesen Höchstmengenüberschreitungen auf.

Untersuchungsergebnisse der Tafelweintrauben entsprechend ihrer Herkunftsverteilung

<table>
<thead>
<tr>
<th>Herkunftsstaat</th>
<th>Anzahl Proben (Anteil in %)</th>
<th>Anzahl Proben > HM (Anteil in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankreich</td>
<td>5 (1)</td>
<td></td>
</tr>
<tr>
<td>Griechenland</td>
<td>29 (6)</td>
<td>7 (24)</td>
</tr>
<tr>
<td>Italien</td>
<td>184 (39)</td>
<td>28 (15)</td>
</tr>
<tr>
<td>Spanien</td>
<td>36 (8)</td>
<td>11 (31)</td>
</tr>
<tr>
<td>unbestimmt</td>
<td>1 (0,2)</td>
<td></td>
</tr>
<tr>
<td>Europa gesamt</td>
<td>255 (54)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>Südamerika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentinien</td>
<td>29 (6)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Brasilien</td>
<td>8 (2)</td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>45 (9)</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Südamerika gesamt</td>
<td>82 (17)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Südafrika</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Südafrika</td>
<td>93 (20)</td>
<td></td>
</tr>
<tr>
<td>Andere Herkünfte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afrika</td>
<td>4 (0,8)</td>
<td></td>
</tr>
<tr>
<td>Ägypten</td>
<td>1 (0,2)</td>
<td></td>
</tr>
<tr>
<td>Indien</td>
<td>3 (0,6)</td>
<td>2 *</td>
</tr>
<tr>
<td>Türkei</td>
<td>29 (6)</td>
<td>17 (59)</td>
</tr>
<tr>
<td>unbestimmt</td>
<td>9 (2)</td>
<td>2 *</td>
</tr>
<tr>
<td>Andere Herkünfte gesamt</td>
<td>46 (10)</td>
<td>21 (46)</td>
</tr>
<tr>
<td>Alle Herkünfte gesamt</td>
<td>476 (100)</td>
<td>71 (15)</td>
</tr>
</tbody>
</table>

*) Datenbasis für prozentuale Auswertung zu gering

Rückstandssituation bei Tafelweintrauben im Vergleich zwischen „Nordhalbkugel“ und „Südhalbkugel“

![Abbildung 6-8](image-url)
<table>
<thead>
<tr>
<th>Wirkstoff</th>
<th>Europa</th>
<th>Nicht Europa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procymidon</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>Dithiocarbamate, als CS 2</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>Cyprodinil</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>Pyrimethanil</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Acrinathrin</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Fludioxinil</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Carbendazim</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Azoxytrobin</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Quinoxyfen</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Myclobutanil</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Brompropylat</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Chlorpyrifos-methyl</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fenitrothion</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Dimethomorph</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fenhexamid</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Penconazol</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Iprodion</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Dichlorvos</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cyhalothrin</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fenarimol</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Profenofos</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Abbildung 6-9: Wirkstoffhäufigkeiten in Tafelweintrauben
Diese Situation spiegelt sich auch in der Zahl der Stoffe wider, die häufig, d. h. in mehr als zehn Prozent der Proben quantifiziert wurden. Während 21 Stoffe häufig in Proben europäischer Herkunft vorkamen, waren dies bei Trauben nicht europäischer Herkunft lediglich zwölf Stoffe. Abbildung 6-9 gibt Auskunft über die prozentuale Häufigkeit, mit der diese Stoffe in Proben europäischer und nicht europäischer Herkunft gefunden wurden. Hier wird erkennbar, dass auf der Nord- bzw. Südhalbkugel jeweils andere Pflanzenschutzmittel-Spektren im Tafeltraubenanbau Anwendung finden.

Abbildung 6-10

<table>
<thead>
<tr>
<th>Anzahl der Proben</th>
<th>50</th>
<th>45</th>
<th>40</th>
<th>35</th>
<th>30</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Stoffe pro Probe</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Abbildung 6-10
Fazit

6.2.2 Projekt PSM3: Pflanzenschutzmittelrückstände in Olivenöl, Weizenkeimöl und Maiskeimöl

In diesem Projekt sollte die Rückstandssituation von Pflanzenschutzmitteln bei verschiedenen Ölsorten mit wirtschaftlicher und ernährungsphysiologischer Bedeutung (Olivenöl, Weizenkeimöl, Maiskeimöl) untersucht werden. Ausgehend von bereits vorliegenden Rückstandsdaten aus der Literatur, die sich auf das Ausgangsprodukt (Olivenöl, Weizen, Mais) oder das Erzeugnis beziehen, der Lipidlöslichkeit des Wirkstoffes und unter Berücksichtigung der zur Anwendung empfohlenen Pflanzenschutzmittel wurde das zu untersuchende Stoffspektrum ausgewählt. Neben Organohalogenverbindungen sollten u.a. Organophosphate, Triazole, Pyrethroide sowie herbizid wirksame Stoffe betrachtet werden, wobei möglichst nicht raffinierte Öle untersucht werden sollten.

Fazit

Rückstandssituation in Olivenöl, Weizenkeimöl und Maiskeimöl

Anteile (in %)

<table>
<thead>
<tr>
<th>Olivenöl</th>
<th>Weizenkeimöl</th>
<th>Maiskeimöl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne messbare Gehalte</td>
<td>mit Gehalten <= Höchstmenge</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 6-11

6.2.3 Projekt PSM4: Rückstände von Chlormequat und Mepiquat in Lebensmitteln

Federführendes Amt: CVUA Stuttgart
Teilnehmende Ämter: LGL Erlangen, LLB Brandenburg, SUAH Kassel, SUAH Wiesbaden, LL Oldenburg, ILC Speyer, LUA Sachsen, Dresden, LVLUA Halle, LSH Kiel

Gemüse- und Getreideproben (Tomaten, Paprika, Karotten, Mais), bei denen die Anwendung von Chlormequat nicht zugelassen ist, wiesen keine Rückstände an Chlormequat oder Mepiquat auf; in Maisgrieß wurden in nur einer Probe Spuren (< 0,01 mg/kg) an Chlormequat nachgewiesen (siehe Abbildung 6-12).

Haferflocken und Weizenmehl als Produkte von Kulturen, bei denen Chlormequat als Halmverkürzer Anwendung findet, wiesen sehr häufig Rückstände dieses Stoffes auf. Die nachgewiesenen Gehalte sind jedoch als sehr gering zu beurteilen und lagen weit unterhalb der gesetzlich festgelegten Höchstmenge. In

Abbildung 6-12

Rückstandssituation von Chlormequat und Mepiquat in den untersuchten Lebensmitteln

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Prozentualer Probenanteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haferflocken</td>
<td>ohne messbare Gehalte: 4</td>
</tr>
<tr>
<td>Kulturpilze</td>
<td>mit Gehalten ≤ Höchstmenge: 71</td>
</tr>
<tr>
<td>Maismehl-junge</td>
<td>mit Gehalten > Höchstmenge: 44</td>
</tr>
<tr>
<td>Weizenmehl</td>
<td>ohne messbare Gehalte: 2</td>
</tr>
<tr>
<td>Birne</td>
<td>mit Gehalten ≤ Höchstmenge: 98</td>
</tr>
<tr>
<td>Tomate</td>
<td>mit Gehalten > Höchstmenge: 38</td>
</tr>
<tr>
<td>Gemüsepaprika</td>
<td>ohne messbare Gehalte: 2</td>
</tr>
<tr>
<td>Karotte</td>
<td>mit Gehalten ≤ Höchstmenge: 58</td>
</tr>
</tbody>
</table>

Fazit

6.2.4 Projekt PSM6: Zinnorganische Verbindungen in Binnenfischen

Am häufigsten, in 40 Prozent der untersuchten Proben, wurde der Wirkstoff Tributylzinn quantifiziert. Der Mittelwert lag bei 0,016 mg/kg, der größte gemessene Gehalt betrug 0,529 mg/kg. Der Wirkstoff Triphenylzinn (TPhT) wurde zwar annähernd so häufig bestimmt (in 37 Prozent der untersuchten Proben), jedoch auf deutlich geringerem Niveau (Mittelwert 0,006 mg/kg, höchster gemesser Wert 0,130 mg/kg). Die TBT-Abbauprodukte Monobutyl- und Dibutylzinn wurden in 20 Prozent der untersuchten Fischproben quantifiziert, wohingegen Mono- und Diphenylzinn nur in sechs Prozent der Proben bestimmt wurden (s. Abbildungen 6-13 und 6-14).

Von den untersuchten Fischarten waren Hechte am geringsten mit TBT belastet; 89 Prozent der Proben enthielten TBT-Gehalte unter 0,005 mg/kg und nur elf Prozent der Gehalte lagen darüber; kein Messwert überschritt 0,200 mg/kg. Aber auch bei anderen untersuchten

Herkunft der Proben

<table>
<thead>
<tr>
<th>Herkunft</th>
<th>Anzahl</th>
<th>relativ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbe</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Havel</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Main</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Neckar</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Rhein</td>
<td>64</td>
<td>31</td>
</tr>
<tr>
<td>Weser</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Fluss ohne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>weitere Angaben</td>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>See (Binnensee)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ohne weitere Angaben</td>
<td>46</td>
<td>23</td>
</tr>
<tr>
<td>Weih./Teich</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Teichwirtschaft</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Zuchtgewässer</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabelle 6-6
Fischarten wurden nur ca. 1/3 der Gehalte oberhalb 0,005 mg/kg gemessen. TBT-Gehalte oberhalb 0,200 mg/kg fanden sich in Brachsen (zwölf Prozent) und in Zandern (15 Prozent); ein Zander wies mit 0,529 mg/kg den höchsten gemessenen TBT-Gehalt auf.

Auch für Triphenylzinn war der Anteil der Proben mit Gehalten unter 0,005 mg/kg bei Hechten mit 80 Prozent am größten, aber auch für diese zinnorganische Verbindung wurden in ca. 2/3 der anderen Fischproben keine Gehalte oberhalb 0,005 mg/kg ermittelt. Der Anteil der Proben mit Gehalten unter 0,005 mg/kg lag bei 58 Prozent für Zander, 59 Prozent für Aal, 66 Prozent für Brachse, 70 Prozent für Barsch und 73 Prozent für Plötze. In Hecht, Barsch und Zander wurden Gehalte oberhalb 0,050 mg/kg nicht bestimmt, keine der ermittelten TPhT-Konzentration lag über 0,200 mg/kg, der höchste Gehalt an Triphenylzinn wurde in einem Aal mit 0,130 mg/kg bestimmt.

Gehalte verschiedener Organozinnverbindungen in Binnenfischproben

Abbildung 6-13
In Fischproben aus Havel und Elbe war ein höherer Anteil mit messbaren Gehalten an TBT und TPhT zu verzeichnen als bei Fischen aus anderen Flüssen. Spitzenwerte an TBT wurden in Fischen aus dem Rhein/Hessen gemessen. TBT-Konzentrationen über 0,100 mg/kg wurden in drei Proben aus dem Rhein/Hessen, in drei Proben aus der Elbe und in einer Probe (Plötze) aus der Unterhavel bestimmt. Die einzige Probe (Aal) mit einem TPhT-Gehalt oberhalb 0,100 mg/kg stammte aus der Elbe bei Cuxhaven.

Fazit

Die im Fisch akkumulierten Konzentrationen an zinnorganischen Verbindungen hängen stark von der Stellung in der Nahrungskette und der Umgebung des Fisches ab, zum Beispiel vom Schiffverkehr und von Industrieabwässern. Einzelne Fische können bedeutende Gehalte an Tributylzinn aufweisen, insgesamt ist die Kontamination von Binnenfischen aber eher als gering anzusehen.
Übersicht der bisher im Monitoring untersuchten Lebensmittel

Die folgende Tabelle gibt eine Übersicht über die bisher untersuchten Lebensmittel mit den dazu gehörigen Beprobungsjahren. Die Reihenfolge der Lebensmittelgruppen und die Zuordnung der Einzellebensmittel zu den Lebensmittelgruppen erfolgt in Anlehnung an die in der amtlichen Lebensmittelüberwachung verwendeten Kodierkataloge (ADV-Kataloge).

<table>
<thead>
<tr>
<th>Warengruppe</th>
<th>Untersuchte Lebensmittel (Jahr der Untersuchung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter</td>
<td>Markenbutter (1996, 1997)</td>
</tr>
<tr>
<td>Eier</td>
<td>Hühnereier (2000)</td>
</tr>
<tr>
<td>Karpfen</td>
<td>Olivenöl (2000)</td>
</tr>
<tr>
<td>Sojaerzeugnisse</td>
<td>Tofu (2002)</td>
</tr>
</tbody>
</table>
Übersicht der bisher im Monitoring untersuchten Lebensmittel

<table>
<thead>
<tr>
<th>Warengruppe</th>
<th>Untersuchte Lebensmittel (Jahr der Untersuchung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilze</td>
<td>Zuchtcampignons (1999)</td>
</tr>
<tr>
<td>Frischobst</td>
<td></td>
</tr>
<tr>
<td>Exotische Früchte und Rhabarber</td>
<td></td>
</tr>
<tr>
<td>Obstprodukte</td>
<td></td>
</tr>
<tr>
<td>Fruchtsäfte</td>
<td></td>
</tr>
<tr>
<td>Wein</td>
<td>Rotwein (2002), Weißwein (2001)</td>
</tr>
<tr>
<td>Bier</td>
<td>Vollbier (2002)</td>
</tr>
<tr>
<td>Honig/Brotaufstriche</td>
<td>Honig (2001), Nougatkrem (1999)</td>
</tr>
<tr>
<td>Schokolade</td>
<td>Schokolade (2002)</td>
</tr>
<tr>
<td>Säuglings- und Klein-</td>
<td></td>
</tr>
<tr>
<td>Trinkwasser</td>
<td>Mineralwasser (1999)</td>
</tr>
</tbody>
</table>
Erläuterungen zu den Fachbegriffen

Aflatoxine
Stoffwechselprodukte von Schimmelpilzen. Wärme und Feuchtigkeit fördern die Aflatoxinbildung. Sie bestehen u.a. aus den chemisch verwandten Einzelverbindungen Aflatoxin B1, B2, G1 und G2 sowie M1. Sie gelten, insbesondere Aflatoxin B1, als die am Tierversuch am stärksten kanzerogen wirksamen Schimmelpilzgifte. Die Frage, ob dieses Aflatoxin auch beim Menschen kanzerogen wirken kann, ist zurzeit nicht eindeutig und endgültig zu beantworten. Um daher eine Gefährdung der Gesundheit durch Aflatoxin belastete Lebensmittel zu vermeiden, wurden Höchstmengen (für Aflatoxin B1 2 µg/kg und für die Summe der Aflatoxine 4 µg/kg sowie für M1 in Milch 0,05 µg/kg) festgesetzt.

Akarizide
Stoffe zur Abtötung von Milben.

Deoxynivalenol

Elemente
Der Begriff „Elemente“ beinhaltet im Lebensmittel-Monitoring die Schwermetalle (siehe dort) und Halbmetalle wie Arsen und Selen.

Fungizide
Stoffe, die das Wachstum von Mikroorganismen (z.B. Schimmelpilzen) be- bzw. verhindern.

Fusarientoxine
Siehe Kasten in 6.1.

Gehaltsangaben
Die Gehalte von Rückständen werden als µg/kg (Mikrogramm pro Kilogramm) angegeben. Für Getränke wird die Einheit mg/l verwendet.

1 µg/kg bedeutet, dass ein Milligramm (ein Millionstel Gramm) eines Rückstandes sich in einem Kilogramm (bzw. Liter) des jeweiligen Lebensmittels befindet. Entsprechend bedeutet 1 µg/kg ein Millionstel Gramm eines Rückstandes in einem Kilogramm eines Lebensmittels.

Zur anschaulichen Beschreibung dieser Angaben werden folgende Beispiele gegeben:

mg/kg:
Wird z.B. ein Stück Würfelzucker in einem mittelgroßen Tankwagen (2700 Liter) aufgelöst, so hat der Tankinhalt den Zuckergehalt von 1 mg/kg.

µg/kg:
Wird z.B. ein Stück Würfelzucker in einem mittelgroßen Tankschiff (2,7 Mill. Liter) aufgelöst, so hat der Tankinhalt den Zuckergehalt von 1 µg/kg.

Herbizide
Unkrautvernichtungsmittel

Höchstmenge (HM) / Höchstgehalt
Höchstmengen sind gesetzlich festgeschriebene, höchstzulässige Mengen eines Stoffes in oder auf Lebensmitteln, die beim gewerblichen Inverkehrbringen nicht überschritten werden dürfen. Sie werden unter Zugrundelegung strenger international anerkannter wissenschaftlicher Maßstäbe so niedrig wie möglich und niemals höher als toxikologisch vertretbar festgesetzt.

Verantwortlich für die Einhaltung von Höchstmengen ist in erster Linie der in der EU ansässige Hersteller/Erzeuger bzw. bei der Einfuhr aus Drittländern der in der EU ansässige Importeur. Die amtliche Lebensmittelüberwachung kontrolliert stichprobenweise das Lebensmittelangebot auf die Einhaltung der Höchstmengen.
In der Monitoring-Berichterstattung wird durchgängig der Begriff „Höchstmenge“ anstelle des in der Rückstandshöchstmen genverordnung (RHmV) verwendeten Be griffes „Rückstandshöchstmenge“ bzw. des auf EU-Ebene zur Begrenzung von Kontaminanten in Lebensmitteln benutzten Begriffes „Höchstgehalt“ verwendet.

Insektizide
Insektenbekämpfungsmittel

Kontaminant

Kontamination
Die Verunreinigung der Lebensmittel mit un erwünschten Stoffen.

Kontaminationsgrad
Zur Festsetzung des Kontaminationsgra des eines Erzeugnisses wird der Anteil der Proben mit Gehalten über den jeweilige Höchst mengen zu Grunde gelegt und entsprechend folgender Skalierung bewertet:

<table>
<thead>
<tr>
<th>Bewertung</th>
<th>Anteil > HM/RW (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – kein</td>
<td>Anteil =0</td>
</tr>
<tr>
<td>2 – gering</td>
<td>0 < Anteil <= 5</td>
</tr>
<tr>
<td>3 – mittelgradig</td>
<td>5 < Anteil <= 10</td>
</tr>
<tr>
<td>4 – erhöht</td>
<td>10 < Anteil <= 15</td>
</tr>
<tr>
<td>5 – hoch</td>
<td>Anteil > 15</td>
</tr>
</tbody>
</table>

Ähnliche Kriterien werden angelegt, um die Höhe der Gehalte oder die Anteile der Proben mit nachgewiesenen Gehalten zu bewerten.

Median
Der Median ist derjenige Zahlenwert, der die Reihe der nach ihrer Größe geordneten Messwerte halbiert. Das bedeutet, die eine Hälfte der Messwerte liegt unter dem Median, die andere Hälfte darüber. Der Median wird vorzugsweise zur Charakterisierung von asymmetrischen Verteilungen, zu denen die Stoffkonzentrationen in Lebensmitteln in der Regel gehören, genutzt. Die Angabe eines Medians ist bei Einbeziehung aller Proben (auch solcher ohne quantifizierte Gehalte) nur sinnvoll, wenn mindestens die Hälfte der Proben quantifizierte Gehalte aufwei sen, andernfalls ist der Median per Definition 0. Der vorliegende Bericht nimmt daher oft Bezug auf den Median, wo dies nicht mög lich war, wurde der Mittelwert ange geben.

Metaboliten
Abbauprodukte von chemischen Ver bindungen, ausgelöst durch chemische Prozesse oder durch Stoffwechselvorgänge.

Mittelwert
Der Mittelwert ist eine statistische Maß zahl, die zur Charakterisierung von Daten dient. Im vorliegenden Bericht wird aus schließlich der arithmetische Mittelwert benutzt. Er berechnet sich als Summe der Messwerte geteilt durch ihre Anzahl.
Moschusverbindungen

Nitrat, Nitrit, Nitrosamine
Im menschlichen Magen-Darm-Trakt kann Nitrat zum Nitrit reduziert werden, aus dem durch Reaktion mit Eiweißstoffen Nitrosamine gebildet werden können. Nitrosamine sind im Tierversuch krebserregend.

Nitrofen

Ochratoxin A

Organochlorverbindungen (Persistente Chlorkohlenwasserstoffe)
Beständige Stoffe, die nur schwer abbaubar sind. Durch ihre Beständigkeit (Persistenz) können sie als Rückstände in Lebensmitteln vorkommen. Beispiele sind HCB, DDT, aber auch PCB.

Mykotoxine
Siehe Kasten in 6.1.

Nachweigrenze
Eine eindeutige und sichere Bestimmung der vorhandenen Menge eines Stoffes ist in der Regel aber erst möglich, wenn noch eine größere Menge vorhanden ist. Die geringste Menge, die mengenmäßig bestimmt (quantifiziert) werden kann, heißt 'Bestimmungsgrenze'.
Im vorliegenden Bericht wird in der Regel nicht zwischen diesen beiden Grenzen unterschieden und alle Rückstände, die unter der Bestimmungsgrenze liegen, als „nicht nachgewiesen“ angeführt. Diese Ungenauigkeit wird in Kauf genommen, um den Bericht verständlich und leicht lesbar zu gestalten.
Organozinnverbindungen

PCB (Polychlorierte Biphenyle)

Perzentil

Pflanzenschutzmittel (PSM)

Quantifizierte Gehalte
Lieg die Konzentration eines Stoffes in einer Größeordnung, so dass sie mit der gewählten analytischen Methode zuverlässig bestimmt werden konnte, so ist diese Konzentration (dieser Messwert) ein quantifizierter Gehalt.

Schwermetalle
Bekannte Vertreter sind Blei, Cadmium, Quecksilber und Zinn. Schwermetalle können durch Luft, Wasser und Boden aber auch im Zuge der Be- und Verarbeitung in die Lebensmittel gelangen.

Toxizität/toxisch
Giftigkeit/giftig

Ubiquitär
Überall verbreitet

Zinnorganische Verbindungen
Siehe Organozinnverbindungen
ADRESSEN DER FÜR DAS MONITORING ZUSTÄNDIGEN MINISTERIEN

Bund
Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft
Postfach 14 02 70 • 53107 Bonn
Telefax: 0188 88/529-42 62
E-Mail: 313@bmvel.bund.de

Länder
Ministerium für Ernährung und Ländlichen Raum Baden-Württemberg
Kernerplatz 10 • 70182 Stuttgart
Telefax: 0711/126 22 55
E-Mail: poststelle@mlr.bwl.de

Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz
Rosenkavalierplatz 2 • 81925 München
Telefax: 089/21 70 26 23
E-Mail: poststelle@stmugv.bayern.de

Senatsverwaltung für Gesundheit, Soziales und Verbraucherschutz
Oranienstraße 106 • 10969 Berlin
Telefax: 030/90 28 20 60
E-Mail: poststelle@sengsv.verwalt-berlin.de

Ministerium für Landwirtschaft, Umweltschutz und Raumordnung des Landes Brandenburg
Postfach 60 11 50 • 14411 Potsdam
Telefax: 03 31/866 40 69-71
E-Mail: poststelle@mlur.brandenburg.de

Senator für Arbeit, Frauen, Gesundheit, Jugend und Soziales
Bahnhofplatz 29 • 28195 Bremen
Telefax: 0421/361 48 08
E-Mail: veterinaerwesen@gesundheit.bremen.de

Behörde für Wissenschaft und Gesundheit
Amt für Gesundheit und Verbraucherschutz
Lagerstraße 36 • 20357 Hamburg
Telefax: 040/428 41 40 40
E-Mail: susanne.ising-volmer@bug.hamburg.de

Hessisches Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz
Hölderlinstraße 1-3 • 65187 Wiesbaden
Telefax: 0611/447 89 71
E-Mail: poststelle@hmulv.hessen.de

Ministerium für Ernährung, Landwirtschaft, Forsten und Fischerei
Mecklenburg-Vorpommern
Paulshöher Weg 1 • 19061 Schwerin
Telefax: 0385/588 60 25
E-Mail: Im-presse@mvnet.de

Ministerium für den ländlichen Raum, Ernährung, Landwirtschaft und Verbraucherschutz
Calenberger Straße 2 • 30169 Hannover
Telefax: 0511/120 23 85
E-Mail: poststelle@ml.niedersachsen.de

Ministerium für Umwelt, Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen
Schwanneweide 3 • 40476 Düsseldorf
Telefax: 0211/456 63 88
E-Mail: poststelle@munlv.nrw.de

Ministerium für Umwelt und Forsten des Landes Rheinland-Pfalz
Kaiser-Friedrich-Straße 1 • 55116 Mainz
Telefax: 06 131/16 46 08
E-Mail: poststelle@Muf.rlp.de

Ministerium für Frauen, Arbeit, Gesundheit und Soziales
Postfach 10 24 53 • 66024 Saarbrücken
Telefax: 06 81/501 33 35
E-Mail: poststelle@soziales.saarland.de

Sächsisches Staatsministerium für Soziales
Albertstraße 10 • 01097 Dresden
Telefax: 03 51/564 57 70
E-Mail: poststelle@sms.sachsen.de

Ministerium für Gesundheit und Soziales des Landes Sachsen-Anhalt
Turmschanzenstraße 25 • 39114 Magdeburg
Telefax: 03 91/567 46 88
E-Mail: poststelle@ms.lsa-net.de
ÜBERSICHT DER FÜR DAS MONITORING ZUSTÄNDIGEN UNTERSUCHUNGS EINRICHTUNGEN DER LÄNDER

Baden-Württemberg
Chemisches und Veterinäruntersuchungsamt Freiburg

Chemisches und Veterinäruntersuchungsamt Karlsruhe

Chemisches und Veterinäruntersuchungsamt Sigmaringen

Chemisches und Veterinäruntersuchungsamt Stuttgart, Sitz Fellbach

Bayern
Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen

Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Dienststelle Oberschleißheim

Berlin
Berliner Betrieb für Zentrale Gesundheitliche Aufgaben (BBGes) – Institut für Lebensmittel, Arzneimittel und Tierseuchen (ILAT)

Brandenburg
Landesamt für Verbraucherschutz und Landwirtschaft, Laborbereich Potsdam

Landesamt für Verbraucherschutz und Landwirtschaft, Laborbereich Frankfurt/Oder

Bremen
Landesuntersuchungsamt für Chemie, Hygiene und Veterinärmedizin

Hamburg
Institut für Hygiene und Umwelt
Hamburger Landesinstitut für Lebensmittel sicherheit, Gesundheitsschutz und Umweltuntersuchungen

Hessen
Staatliches Untersuchungsamt Hessen, Standort Kassel

Staatliches Untersuchungsamt Hessen, Standort Wiesbaden

Mecklenburg-Vorpommern
Landesveterinär- und Lebensmitteluntersuchungsamt Mecklenburg-Vorpommern, Rostock

Niedersachsen
Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, Lebensmittelinstitut Braunschweig

Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, Lebensmittelinstitut Oldenburg

Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, Veterinärinstitut für Fische und Fischwaren Cuxhaven

Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, Veterinärinstitut Hannover

Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, Veterinärinstitut Oldenburg, Außenstelle Stade

Nordrhein-Westfalen
Chemisches und Lebensmitteluntersuchungsamt der Stadt Aachen

Staatliches Veterinäruntersuchungsamt Arnsberg
<table>
<thead>
<tr>
<th>Länder</th>
<th>Untersuchungseinrichtungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bielefeld</td>
<td>Chemisches Untersuchungsamt der Stadt Bielefeld</td>
</tr>
<tr>
<td>Bochum</td>
<td>Chemisches Untersuchungsamt der Stadt Bochum</td>
</tr>
<tr>
<td>Bonn</td>
<td>Amt für Umweltschutz und Lokale Agenda der Stadt Bonn</td>
</tr>
<tr>
<td>Detmold</td>
<td>Staatliches Veterinäruntersuchungsamt Detmold</td>
</tr>
<tr>
<td>Dortmund</td>
<td>Chemisches und Lebensmitteluntersuchungsamt der Stadt Dortmund</td>
</tr>
<tr>
<td>Düsseldorf</td>
<td>Chemisches Lebensmitteluntersuchungsamt der Stadt Düsseldorf</td>
</tr>
<tr>
<td>Münster</td>
<td>Chemisches Untersuchungsinstitut im Amt für Kommunalen Umweltschutz der Stadt Duisburg</td>
</tr>
<tr>
<td>Essen</td>
<td>Chemisches und Geowissenschaftliches Institut der Städte Essen und Oberhausen</td>
</tr>
<tr>
<td>Hagen</td>
<td>Chemisches Untersuchungsamt der Stadt Hagen</td>
</tr>
<tr>
<td>Hamm</td>
<td>Chemisches Untersuchungsamt der Stadt Hamm</td>
</tr>
<tr>
<td>Köln</td>
<td>Institut für Lebensmittel- und Umweltuntersuchungen der Stadt Köln</td>
</tr>
<tr>
<td>Leverkusen</td>
<td>Chemisches Untersuchungsinstitut der Stadt Leverkusen</td>
</tr>
<tr>
<td>Recklinghausen</td>
<td>Amt für Verbraucherschutz des Kreises Mettmann</td>
</tr>
<tr>
<td>Speyer</td>
<td>Chemisches Landes- und Staatliches Veterinäruntersuchungsamt, Münster</td>
</tr>
<tr>
<td>Trier</td>
<td>Chemisches Untersuchungsamt der Stadt Leverkusen</td>
</tr>
<tr>
<td>Moers</td>
<td>Gemeinsames Chemisches und Lebensmitteluntersuchungsamt für den Kreis Recklinghausen und die Stadt Gelsenkirchen in der Emscher-Lippe-Region (CEI), Recklinghausen</td>
</tr>
<tr>
<td>Viersen</td>
<td>Chemisches Untersuchungsamt des Kreises Viersen</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>Institut für Lebensmitteluntersuchungen und Umwelthygiene für die Kreise Wesel und Kleve, Standort: Moers</td>
</tr>
<tr>
<td>Koblenz</td>
<td>Chemisches Untersuchungsinstitut Bergisches Land Wuppertal</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>Landesuntersuchungsamt Rheinland-Pfalz Fachbereich Tiermedizin Koblenz</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>Landesuntersuchungsamt Rheinland-Pfalz Institut für Lebensmittelchemie Speyer</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>Landesuntersuchungsamt Rheinland-Pfalz Institut für Lebensmittelchemie Trier</td>
</tr>
<tr>
<td>Saarbrücken</td>
<td>Landesamt für Verbraucher-, Gesundheits- und Arbeitsschutz Saarbrücken</td>
</tr>
<tr>
<td>Sachsen</td>
<td>Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Standort Chemnitz</td>
</tr>
<tr>
<td>Sachsen</td>
<td>Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Standort Dresden</td>
</tr>
<tr>
<td>Sachsen</td>
<td>Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen, Standort Leipzig</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>Landesamt für Verbraucherschutz Sachsen-Anhalt, Standorte Halle und Stendal</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>Landeslabor Schleswig-Holstein, Neumünster</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>Landeslabor Schleswig-Holstein, Außenstelle Kiel I</td>
</tr>
<tr>
<td>Thüringen</td>
<td>Thüringer Landesamt für Lebensmittelsicherheit und Verbraucherschutz, Standort Bad Langensalza</td>
</tr>
<tr>
<td>Thüringen</td>
<td>Thüringer Landesamt für Lebensmittelsicherheit und Verbraucherschutz, Standort Erfurt</td>
</tr>
<tr>
<td>Thüringen</td>
<td>Thüringer Landesamt für Lebensmittelsicherheit und Verbraucherschutz, Standort Jena</td>
</tr>
</tbody>
</table>
LEBENSMITTEL-MONITORING 2003

Übersicht der im Monitoring 2003 untersuchten Lebensmittel

Fleisch • Kaninchen • Gans • Ente • **Getreide und Getreideprodukte** • Weizenkörner • Reis • Speisekleie aus Weizen • **Gemüse** • Weißkohl • Blumenkohl • Gemüsepaprika • Gurke • Aubergine Erbsen (tiefgefahren) • **Küchenkräuter** • Basilikum, Bohnenkraut, Dill, Petersilie, Schnittlauch

Mykotoxin-Projekte • Deoxynivalenol in Hartweizengrieß, Teigwaren und Brot • Deoxynivalenol in Vollkorn- und Mehrkornerzeugnissen für Säuglinge und Kleinkinder • Fumonisine in Maismehl, Maisgrieß und Cornflakes • Ochratoxin A in getrockneten Weintrauben

Pflanzenschutzmittel-Projekte • Pflanzenschutzmittelrückstände in Tafelweintrauben • Rückstände von Benzoyl-Harnstoffen in Tafelweintrauben • Pflanzenschutzmittelrückstände in Olivenöl, Weizenkeimöl und Maiskeimöl • Rückstände von Chlormequat und Mepiquat in Lebensmitteln • Zinnorganische Verbindungen in Binnenfischen