# **Art. 51**

# Extension of authorisation for minor uses REGISTRATION REPORT Part A

# Risk Management

**Product code: -**

**Product name: Cuprozin progress** 

Active Substances: Copper hydroxide 383 g/L

**COUNTRY:** Germany

Central Zone

**Zonal Rapporteur Member State: Germany** 

# NATIONAL ASSESSMENT

**Applicant: Spiess-Urania Chemicals GmbH** 

Date: 28.01.2020

# **Table of Contents**

| r | AKI A –   | KISK Management                                                                                  | 3  |
|---|-----------|--------------------------------------------------------------------------------------------------|----|
|   |           | Deteller (de en eller)                                                                           | 1  |
| 1 | 1 1       | Details of the application                                                                       |    |
|   | 1.1       | Application background                                                                           |    |
|   | 1.2       | Annex I inclusion                                                                                |    |
|   | 1.3       | Regulatory approach                                                                              |    |
|   | 1.3.1     | Uses applied for and registration decision                                                       |    |
|   | 1.3.2     |                                                                                                  |    |
|   | 1.4       | Data protection claims                                                                           | 4  |
|   | 1.5       | Letters of Access                                                                                | 4  |
|   |           |                                                                                                  |    |
| 2 |           | Details of the authorisation                                                                     | 5  |
|   | 2.1       | Product identity                                                                                 | 5  |
|   | 2.2       | Classification and labelling                                                                     | 5  |
|   | 2.2.1     | Classification and labelling under Regulation (EC) No 1272/2008                                  | 5  |
|   | 2.2.2     | R and S phrases under Regulation (EC) No 547/2011                                                |    |
|   | 2.2.3     | Other phrases                                                                                    |    |
|   | 2         | 2.3.1 Restrictions linked to the PPP                                                             |    |
|   |           | 2.3.2 Specific restrictions linked to the intended uses                                          |    |
|   | 2.3       | Product uses                                                                                     |    |
|   |           |                                                                                                  | 10 |
| 3 |           | Risk management                                                                                  | 11 |
| • | 3.1       | Reasoned statement of the overall conclusions taken in accordance with the Uniform Principles    |    |
|   | 3.1.1     | Physical and chemical properties                                                                 |    |
|   | 3.1.2     | · ·                                                                                              |    |
|   | •         | 1.2.1 Analytical method for the formulation                                                      |    |
|   | _         | 1.2.1 Analytical methods for residues                                                            |    |
|   | 3.1.3     | Mammalian Toxicology                                                                             |    |
|   | 3.1.3     |                                                                                                  |    |
|   |           | Residues and Consumer Exposure                                                                   |    |
|   | _         | 1.4.1 Residues                                                                                   |    |
|   | _         | 1.4.2 Consumer exposure                                                                          |    |
|   | 3.1.5     | Environmental fate and behaviour                                                                 |    |
|   | 3.1.6     | Ecotoxicology                                                                                    |    |
|   | 3.1.7     | Efficacy                                                                                         |    |
|   | 3.2       | Conclusions                                                                                      | 12 |
|   | 3.3       | Further information to permit a decision to be made or to support a review of the conditions and |    |
|   |           | restrictions associated with the authorisation                                                   | 13 |
|   |           |                                                                                                  |    |
| A | ppendix   | I – Copy of the product authorisation                                                            | 14 |
|   |           |                                                                                                  |    |
| A | ppendix 1 | 2 – Copy of the product label                                                                    | 15 |
|   |           |                                                                                                  |    |
| A | ppendix ( | 3 – Letter of Access                                                                             | 16 |
|   |           |                                                                                                  |    |
| A | nnendix 4 | 4 – Conv of the product authorisation                                                            | 17 |

#### PART A – Risk Management

This document describes the acceptable use conditions required for extension of the registration of Cuprozin progress containing Copper hydroxide in Germany.

The risk assessment conclusions are based on the already existing registration of the PPP. The following sections of Registration Report, Part B were prepared on basis of new data:

• Section 7.

Assessments for the safe use of Cuprozin progress have been made using endpoints agreed in the EU reviews of Copper hydroxide.

Appendix 1 of this document provides a copy of the final product authorisation in Germany.

# 1 Details of the application

Application to extend the authorisation of a plant protection product (PPP) already authorised in Germany to minor uses not yet covered by that authorisation.

The application is intended for use in AT and Germany.

#### 1.1 Application background

#### Details on applicant and application

| Plant protection product    | Cuprozin progress                                                           |
|-----------------------------|-----------------------------------------------------------------------------|
| Type of application         | Zonal application according to Article 51, ZRMS=DE, first application (GV1) |
| Registration number         | 006895-00/23                                                                |
| Applicant                   | Spiess-Urania Chemicals GmbH, Frankenstraße 18b, 20097 Hamburg, Deutschland |
| Authorisation holder        | Spiess-Urania Chemicals GmbH, Frankenstraße 18b, 20097 Hamburg, Deutschland |
| Function                    | Fungicide                                                                   |
| Type of formulation         | Suspension concentrate (SC)                                                 |
| Expiration of authorisation | 2021-12-31                                                                  |

#### 1.2 Annex I inclusion

The active substances included in the plant protection product are approved according Regulation (EC) No 1107/2009. The present application is in line with the provisions of the approvals.

Active substance (BVL Number)

#### Copper hydroxide (0347)

Content in PPP 383 g/l

Approval status Approved according Regulation (EC) No 1107/2009

Approval Regulation (EC) No 540/2011

Expiration of approval 31.12.2025

# 1.3 Regulatory approach

The PPP is already registered in Germany according to Directive 91/414/EEC taking into account the uniform principles. Therefore the evaluation of the actual application is limited to the points not covered by the existing registration.

#### 1.3.1 Uses applied for and registration decision

| Number of use | Plant/commodity/object | Harmful organism/purpose                           | decision  |
|---------------|------------------------|----------------------------------------------------|-----------|
| 001           | flowering brassicas    | downy mildew of crucifers (Peronospora parasitica) | Authorise |

#### 1.3.2 Public interest and minor use

According to Article 51 (2) a and c of the Regulation (EC) No. 1107/2009 an extension of authorisation is only possible if the intended use applied for is minor in nature and in the public interest.

In Germany the cultivated area of flowering brassicas is about 6100 ha, of which 2440 ha need to be controlled.

Calculations show that the authorisation holder will not profit from an authorisation in this use.

Considering this calculation and the examination of available alternative measures for the applied use, it can be stated that the use is minor in nature and that an authorisation would be in the public interest.

#### 1.4 Data protection claims

The applicant is owner of the new studies submitted and claims data protection.

#### 1.5 Letters of Access

The applicant is owner of the new studies submitted. No letter of access required. The applicant is authorisation holder.

#### 2 Details of the authorisation

# 2.1 Product identity

Product name Cuprozin progress

Authorisation number 006895-00

Composition Copper hydroxide 383 g/L (g/kg)

Type of formulation Suspension concentrate (SC)

Function Fungicide

Authorisation holder Spiess-Urania Chemicals GmbH, Frankenstraße 18b, 20097 Hamburg,

Deutschland

# 2.2 Classification and labelling

# 2.2.1 Classification and labelling under Regulation (EC) No 1272/2008

| Hazard classes and c   | categories:                                                                                                                      |  |  |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Eye Dam. 1, Acute 7    | Tox. 4, <del>Carc. 2</del>                                                                                                       |  |  |  |  |  |  |  |
| Hazard pictograms:     |                                                                                                                                  |  |  |  |  |  |  |  |
| GHS05                  | GHS05 corrosion                                                                                                                  |  |  |  |  |  |  |  |
| GHS07 exclamation mark |                                                                                                                                  |  |  |  |  |  |  |  |
| GHS09                  | environment                                                                                                                      |  |  |  |  |  |  |  |
| Signal word:           |                                                                                                                                  |  |  |  |  |  |  |  |
| Danger                 |                                                                                                                                  |  |  |  |  |  |  |  |
| Hazard statements:     |                                                                                                                                  |  |  |  |  |  |  |  |
| H318                   | Causes serious eye damage.                                                                                                       |  |  |  |  |  |  |  |
| H332                   | Harmful if inhaled.                                                                                                              |  |  |  |  |  |  |  |
| H400                   | Very toxic to aquatic life.                                                                                                      |  |  |  |  |  |  |  |
| H410                   | Very toxic to aquatic life with long lasting effects.                                                                            |  |  |  |  |  |  |  |
| Precautionary states   | ntents:                                                                                                                          |  |  |  |  |  |  |  |
| P101                   | If medical advice is needed, have product container or label at hand.                                                            |  |  |  |  |  |  |  |
| P102                   | Keep out of reach of children.                                                                                                   |  |  |  |  |  |  |  |
| P271                   | Use only outdoors or in a well-ventilated area.                                                                                  |  |  |  |  |  |  |  |
| P280                   | Wear protective gloves/protective clothing/eye protection/face protection.                                                       |  |  |  |  |  |  |  |
| P305+P351+P338         | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |  |  |  |  |  |  |  |
| P308+P310              | IF exposed or concerned: Immediately call a POISON CENTER or a doctor/physician.                                                 |  |  |  |  |  |  |  |
| P391                   | Collect spillage.                                                                                                                |  |  |  |  |  |  |  |
| P501                   | Dispose of contents/container to                                                                                                 |  |  |  |  |  |  |  |
| Special rule for labe  | lling of PPP:                                                                                                                    |  |  |  |  |  |  |  |
| EUH401                 | To avoid risks to man and the environment, comply with the instructions for use.                                                 |  |  |  |  |  |  |  |
|                        | 10.4 percent of the mixture consist of ingredient(s) of unknown inhalation toxicity.                                             |  |  |  |  |  |  |  |
| Further labelling sta  | ttements under Regulation (EC) No 1272/2008:                                                                                     |  |  |  |  |  |  |  |
| None                   |                                                                                                                                  |  |  |  |  |  |  |  |

# 2.2.2 R and S phrases under Regulation (EC) No 547/2011

EO005-2 SPo 5: Ventilate greenhouses thoroughly before re-entry.

# 2.2.3 Other phrases

# 2.2.3.1 Restrictions linked to the PPP

The authorization of the PPP is linked to the following conditions (mandatory labelling):

#### **Human health protection**

- SB001 Avoid any unnecessary contact with the product. Misuse can lead to health damage.
- SB005 If medical advice is needed, have product container or label at hand.
- SB010 Keep out of the reach of children.
- SB111 Concerning the requirements for personal protective gear for handling the plant protection product the material safety data sheet and the instructions for use of the plant protection product as well as the guideline "Personal protective gear for handling plant protection products" of the Federal Office of Consumer Protection and Food Safety (www.bvl.bund.de) must be observed.
- SB166 Do not eat, drink or smoke when using this product.
- When applying the product with tractor-mounted, trailed or self-propelled application equipment, only vehicles with closed pressurized cabins (e.g. cabin category 3, if no respiratory protective equipment or particle-filtering masks are necessary or category 4, if gastight respiratory protective equipment is needed acc. to EN 15695-1 and -2) are suited to replace personal protective equipment during application. During all other activities outside of the cabin the prescribed personal protective equipment must be worn. In order to avoid contamination of the cabin, it is not permitted to enter the cabin with contaminated personal protective equipment (it should be deposited e.g. in an appropriate storage facility). Contaminated gloves should be washed before removing the gloves and hands should be washed before entering the cabin with pure water, respectively.
- SE110 Wear tight fitting eye protection when handling the undiluted product.
- When re-entering the treated bush and tree cultures on the day of application the protective suit for working with plant protection products and universal protective gloves (plant protection) must be worn. Successive work on/in the crops stated above may not be carried out until 24 hours after applying the product. During the first week, the standard protective suit for working with plant protection products and universal protective gloves (plant protection) must be worn.
- SF245-02 It must be ensured that treated areas/crops may not be entered until the film of the plant protection product has dried.
- SS110 Wear standard protective gloves (plant protection) when handling the undiluted product.
- Wear standard protective gloves (plant protection) when handling/applying the product ready for application.
- Wear a protective suit against pesticides and sturdy shoes (e.g. rubber boots) when handling the undiluted product.
- Wear a protective suit against pesticides and sturdy shoes (e.g. rubber boots) when applying/handling the product ready for application.
- Wear a rubber apron when handling the undiluted product.

#### **Ecosystem protection**

- NH621 In addition to the information on the type and amount of active substance, the content of pure copper in the product must be stated on the containers and retail packaging. This information must be stated directly below the directions for use under NT620.
- NO686 The product is classified as damaging for populations of earthworms

Date: 01/2020

- NT620-1 The maximum total application rate of 3000 g pure copper per hectare per year on the same area even if combined with other plant protection products containing copper shall not be exceeded (with the exception of 4000 g pure copper per hectare per year in hop cultivation and against black rot in viticulture).
- NT621-1 Within a five-year period (including the current year and the preceding four calendar years), the sum of the total application rate of 17,500 g pure copper per hectare in viticulture shall not be exceeded.
- NT622 In the years in which a total application rate of 3000 g pure copper per hectare is exceeded in viticulture, the competent authority of the country must be informed of the quantity effectively used and the exact size of the treated vine-growing area until 30 November of each year.
- NT623 In viticulture, the total application rates per hectare per year, indicating the exact area shall be documented in a suitable form. The records shall be kept for a minimum period of five years
- NW262 The product is toxic for algae.
- NW264 The product is toxic for fish and aquatic invertebrates.
- NW468 Fluids left over from application and their remains, products and their remains, empty containers and packaging, and cleansing and rinsing fluids must not be dumped in water. This also applies to indirect entry via the urban or agrarian drainage system and to rain-water and sewage canals.

#### **Integrated Pest Management (IPM)**

- NN3842 The product is classified as harmful for populations of the species Aphidius rhopalosiphi (braconid wasp).
- NN370 The product is classified as harmful for populations of the species Chrysoperla carnea (lacewing).

Mode of action: WMFM1

#### **Active substance**

None

The authorization of the PPP is linked to the following conditions (voluntary labelling):

#### **Integrated Pest Management (IPM)**

NN134 The product is classified as harmless for populations of the species Typhlodromus pyri (predatory mite).

#### Honeybee

NB6641 The product is classified as non-hazardous to bees, even when the maximum application rate, or concentration if no application rate is stipulated, as stated for authorisation is applied. (B4)

#### 2.2.3.2 Specific restrictions linked to the intended uses

Some of the authorized uses are linked to the following conditions (mandatory labelling): See 2.3 (Product uses)

#### **Ecosystem protection**

NW605-1 When applying the product on areas adjacent to surface waters - except only occasionally but including periodically water bearing surface waters - the product must be applied with equipment which is registered in the index of 'Loss Reducing Equipment' of 14 October 1993

Cuprozin progress Art. 51 Extension of authorisation for minor uses

BVL Registration Number: 006895-00/23

Draft Registration Report – Central Zone Country – Germany

Page 9 of 17

('Bundesanzeiger' [Federal Gazette] No 205, p. 9780) as amended. Depending on the drift reduction classes for the equipment stated below, the following buffer zones must be kept from surface waters. In addition to the minimum buffer zone from surface waters stipulated by state law, the ban on application in or in the immediate vicinity of waters must be observed at all times for drift reduction classes marked with "\*".

Driftreduction: 90%: \*

75%: \* 50%: 5m

NW606

The only case in which the product may be applied without loss reducing equipment is when at least the buffer zone stated below is kept from surface waters - except only occasionally but including periodically water bearing surface waters. Violations may be punished by fines of up to 50 000 Euro.

Bufferzone: 5m

#### 2.3 Product uses

PPP (product name/code) active substance

**Cuprozin progress (006895-00/22)** 

Copper hydroxide

Formulation type:

SC

Conc. of as: 383.0 g/L

Date: 01/2020

Applicant: Zone(s):

Landesanstalt Sachsen-Anhalt

central EU

professional use non professional use

 $\square$ 

Verified by MS: j

Field of use: fungicide

| 1    | 2        | 3                                | 4       | 5                                                         | 6                | 7                                                                                               | 8                              | 10                                    | 11                                       | 12         | 13     | 14                                             |
|------|----------|----------------------------------|---------|-----------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------|------------------------------------------|------------|--------|------------------------------------------------|
| Use- | Member   | Crop and/                        | F<br>G  | Pests or Group of pests                                   |                  | Application                                                                                     |                                | A                                     | pplication rate                          |            | PHI    | Remarks:                                       |
| No.  | state(s) | or situation (crop destination / | or<br>I | controlled (additionally:                                 | Method /<br>Kind | Timing / Growth stage of crop &                                                                 | Max. number (min. interval     | kg, L product /<br>ha                 | g, kg as/ha                              | Water L/ha | (days) | e.g. safener/synergist per ha                  |
|      |          | purpose of crop)                 |         | developmental stages of<br>the pest or pest group)        |                  | season                                                                                          | between applications)          | a) max. rate per appl.                | a) max. rate<br>per appl.                | min / max  |        | e.g. recommended or mandatory tank<br>mixtures |
|      |          |                                  |         |                                                           |                  |                                                                                                 | a) per use b) per crop/ season | b) max. total rate<br>per crop/season | b) max. total<br>rate per<br>crop/season |            |        |                                                |
| 001  | DE       | flowering brassicas<br>NNNKL*    | F       | downy mildew of crucifers (Peronospora parasitica) PEROPA | spraying         | from BBCH 13;<br>at beginning of<br>infestation and/or                                          | 7-10 days<br>a) 4              | a) 2 L/ha                             | a) 0.766 kg<br>as/ha                     | 200- 600   | 7      | Restrictions (see 2.2.3.2)                     |
|      |          |                                  |         |                                                           |                  | when first<br>symptoms become<br>visible until shortly<br>before flowering of<br>the main umbel | b) 4                           | b) 8 L/ha                             | b) 3.064.kg<br>as/ha                     |            |        |                                                |

<sup>\*</sup>no EPPO code

Date: 26 09 2019

#### 3 Risk management

# 3.1 Reasoned statement of the overall conclusions taken in accordance with the Uniform Principles

#### 3.1.1 Physical and chemical properties

Not relevant for extension of authorisation according article 51.

#### 3.1.2 Methods of analysis

#### 3.1.2.1 Analytical method for the formulation

Not relevant for extension of authorisation according article 51.

#### 3.1.2.2 Analytical methods for residues

Acceptable analytical methods in high water content commodities such as flowering brassicas are available for enforcing copper residues.

#### 3.1.3 Mammalian Toxicology

The PPP is already registered in Germany according to Directive 91/414/EEC.

If used properly and according to the intended conditions of use, adverse health effects for operators, workers, bystanders and residents will not be expected.

#### 3.1.4 Residues and Consumer Exposure

The residue behaviour of the active substance copper hydroxide has been evaluated within the EU review process. Information about intake in plants is sufficient to evaluate the intended use in flowering brassicas.

#### **3.1.4.1 Residues**

The data available are considered sufficient for risk assessment. An exceedance of the current MRL of 20 mg/kg for copper in flowering brassica as laid down in Reg. (EC) No 396/2005 is not expected.

#### 3.1.4.2 Consumer exposure

An estimation of dietary intake using EFSA PRIMo results in a maximum consumption of the respective ADI of below 100 %. An ARfD was not deemed necessary

| TMDI (% ADI) according to EFSA PRIMo                                  | Not calculated                                                                                                                                                                                    |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEDI (% ADI) according to EFSA PRIMo rev. 2 (EFSA, 2018, ASB2018-2445 | Scenario 1 (without risk mitigation measure): 107% (based on WHO cluster diet B, mean body weight) Scenario 2 (with risk mitigation measure): 91% (based on WHO cluster diet B, mean body weight) |
| IEDI (% ADI) according to EFSA PRIMo rev. 3.1                         | Scenario 1 (without risk mitigation measure): 165% (based on NL toddlers, mean body weight) Scenario 2 (with risk mitigation measure): 162% (based on NL toddlers, mean body weight)              |
| IESTI (% ARfD) according to EFSA PRIMo                                | Not necessary – no ARfD allocated                                                                                                                                                                 |

Date: 26 09 2019

The calculated exposure for German children is significantly lower (77% ADI). Furthermore, the contribution of flowering brassica to the total chronic exposure is insignificant (<1% ADI for all diets). Thus, it can be concluded that the intended use of Cuprozin progress in flowering brassica does not pose unacceptable risks to consumer health in Germany. Extensive calculation sheets are presented in Part B, Section 7, Fehler! Verweisquelle konnte nicht gefunden werden.

The long-term and the short-term intake of copper residues are unlikely to present a consumer health concern.

#### 3.1.5 Environmental fate and behaviour

No new studies are presented; all data were reviewed within the EU review and approval of the national authorisation 006895-00/00 according the uniform principles of directive 91/414/EEC.

#### 3.1.6 Ecotoxicology

No new studies are presented; all data were reviewed within the EU review and approval of the national authorisation 006895-00/00 according the uniform principles of directive 91/414/EEC.

The PPP Cuprozin progress and the active substance copper-hydroxyd are toxic to the aquatic environment (Oncorhynchus mykiss:  $LC10 = 3.7 \mu g/L$  and natural background concentration of the testwater:  $1 \mu g/L$ ). Subsequently no additional entries as those according to the evaluated use pattern and good agricultural practise are acceptable. Therefore the safety phrases and conditions of use NW262, NW264, NW468, NH621, NT620-1, NT621-1, NT622, NT623 and NW605-1/606 are assigned, see also 2.2.

The honeybee risk assessment for the main application covers the use in accordance with Article 51 of regulation (EC) No 1107/2009 (see also point 2.2).

#### 3.1.7 Efficacy

Labelling in accordance with the requirements of ANNEX III General principles of integrated pest management under directive 2009/128/EC (see also point 2.2):

- In accordance with Article 51 of Regulation (EC) No. 1107/2009 the classification for beneficial arthropods is covered by the main application.
- -The labelling for the mode of action is consistent with the main application and covers the use in accordance with Article 51 of Regulation (EC) No. 1107/2009.
- -According to Article 51 of the Regulation (EC) No. 1107/2009, the requirements for authorisation regarding the product's effectiveness and unacceptable effects on plants and plant products do not have to be met.

#### 3.2 Conclusions

PPP Cuprozin progress is already registered in Germany according to Directive 91/414/EEC taking into account the uniform principles of Annex VI.

The intended use is minor in nature and the extension of authorisation is in the public interest. Effects on bees and other beneficials were evaluated within the framework of the already authorised uses. No additional effects are anticipated because of the extension of authorisation).

With respect to toxicology, residues and consumer protection an authorisation can be granted.

Cuprozin progress
Art. 51
Extension of authorisation for minor uses
BVL Registration Number: 006895-00/23

Draft Registration Report – Central Zone Country – Germany

Page 13 of 17

Considering an application in accordance with the evaluated use pattern and good agricultural practise as well as strict observance of the conditions of use no harmful effects on groundwater or adverse effects on the ecosystem are to be apprehended.

An authorisation is granted.

3.3 Further information to permit a decision to be made or to support a review of the conditions and restrictions associated with the authorisation

None

#### Cuprozin progress Art. 51 Extension of authorisation for minor uses BVL Registration Number: 006895-00/23

Draft Registration Report – Central Zone Country – Germany

Page 14 of 17

Date: 26.09.2019

# Appendix 1 - Copy of the product authorisation

See Appendix 4.

Cuprozin progress
Art. 51
Extension of authorisation for minor uses
BVL Registration Number: 006895-00/23

Draft Registration Report – Central Zone Country – Germany

Page 15 of 17

Date: 26.09.2019

# Appendix 2 – Copy of the product label

No product label available. Not mandatory according to Article 51 (5)

Cuprozin progress
Art. 51
Extension of authorisation for minor uses
BVL Registration Number: 006895-00/23

Draft Registration Report – Central Zone Country – Germany

Page 16 of 17

Date: 26.09.2019

# Appendix 3 – Letter of Access

No letter of access necessary. The applicant is owner of the new studies submitted. Authorisation holder is the applicant of the current application to extend the authorisation.

Cuprozin progress Art. 51 Extension of authorisation for minor uses BVL Registration Number: 006895-00/23 Draft Registration Report – Central Zone Country – Germany

Page 17 of 17

Date: 26.09.2019

# Appendix 4 - Copy of the product authorisation



Bundesamt für Verbraucherschutz und Lebensmittelsicherheit Dienstsitz Braunschweig • Postfach 15 64 • 38005 Braunschweig

Dr. Birgit Schreiber

Referentin

Spiess-Urania Chemicals GmbH Frankenstraße 18 b 20097 Hamburg TELEFON +49 (0)531 299-3457 TELEFAX +49 (0)531 299-3002 E-MAIL birgit.schreiber@bvl.bund.de

IHR ZEICHEN IHRE NACHRICHT VOM

AKTENZEICHEN 200.22200.006895-00/23.253894 (bitte bei Antwort angeben)

DATUM 28. Januar 2020

#### GV1 006895-00/23

**Cuprozin progress** 

Verfahren zur Erweiterung einer Zulassung nach Artikel 51 Abs. 1 der Verordnung (EG) Nr. 1107/2009

Bescheid

Die Zulassung des oben genannten Pflanzenschutzmittels

mit dem Wirkstoff: 383 g/l Kupferhydroxid

Zulassungsnummer: 006895-00

Versuchsbezeichnungen: SPU-02700-F-1-SC

Antrag vom: 22. November 2018

wird wie in Anlage 1 beschrieben auf der Grundlage von Art. 51 der Verordnung (EG) Nr. 1107/2009 des Europäischen Parlaments und des Rates vom 21. Oktober 2009 über das Inverkehrbringen von Pflanzenschutzmitteln und zur Aufhebung der Richtlinien 79/117/EWG und 91/414/EWG des Rates (Abl. L 309 vom 24.11.2009, S. 1) um folgende Anwendungsgebiete bzw. Anwendungen erweitert:

| Anwendungs-      | Schadorganismus/     | Pflanzen/-erzeugnisse/ | Verwendungszweck |
|------------------|----------------------|------------------------|------------------|
| nummer           | Zweckbestimmung      | Objekte                |                  |
| 006895-00/23-001 | Falscher Mehltau     | Blumenkohle            |                  |
|                  | (Peronospora parasi- |                        |                  |
|                  | tica)                |                        |                  |

# Festgesetzte Anwendungsbestimmungen

Es werden folgende Anwendungsbestimmungen gemäß § 36 Abs. 1 S. 1 des Gesetzes zum Schutz der Kulturpflanzen (Pflanzenschutzgesetz - PflSchG) vom 6. Februar 2012 (BGBI. I S. 148, 1281), zuletzt geändert durch Artikel 4 Absatz 84 des Gesetzes vom 18. Juli 2016 (BGBI. I S. 1666), festgesetzt:

Siehe anwendungsbezogene Anwendungsbestimmungen in Anlage 1, jeweils unter Nr. 3.

#### **Auflagen**

Die Zulassung wird mit folgenden Auflagen gemäß § 36 Abs. 3 S. 1 PflSchG verbunden: Siehe Anlage 1, jeweils unter Nr. 2.

#### Vorbehalt

Dieser Bescheid wird mit dem Vorbehalt der nachträglichen Aufnahme, Änderung oder Ergänzung von Anwendungsbestimmungen und Auflagen verbunden.

#### Abgelehnte Anwendungsgebiete bzw. Anwendungen

Für folgende Anwendungsgebiete bzw. Anwendungen lehne ich Ihren Antrag ab (siehe Anlage 2):

- keine -

# Rechtsbehelfsbelehrung

Gegen diesen Bescheid kann innerhalb eines Monats nach Bekanntgabe Widerspruch erhoben werden. Der Widerspruch ist bei dem Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Messeweg 11/12, 38104 Braunschweig, schriftlich oder zur Niederschrift einzulegen.

Mit freundlichen Grüßen im Auftrag

gez. Dr. Martin Streloke Abteilungsleiter

Dieses Schreiben wurde maschinell erstellt und ist daher ohne Unterschrift gültig.

# **Anlage**

# Anlage 1 zugelassene Anwendung: 006895-00/23-001

#### 1 Anwendungsgebiet

Schadorganismus/Zweckbestimmung: Falscher Mehltau (Peronospora parasitica)

Pflanzen/-erzeugnisse/Objekte: Blumenkohle

Verwendungszweck:

#### 2 Kennzeichnungsauflagen

# 2.1 Angaben zur sachgerechten Anwendung

Einsatzgebiet: Gemüsebau

Anwendungsbereich: Freiland

Anwendung im Haus- und

Kleingartenbereich: Nein Stadium der Kultur: ab 13

Anwendungszeitpunkt: Bei Infektionsgefahr bzw. ab Warndiensthinweis

Maximale Zahl der Behandlungen

in dieser Anwendung: 4für die Kultur bzw. je Jahr: 4

- Abstand: 7 bis 10 Tage

Anwendungstechnik: spritzen

Aufwand:

- 2 I/ha in 400 bis 600 I Wasser/ha

#### 2.2 Sonstige Kennzeichnungsauflagen

- keine -

#### 2.3 Wartezeiten

7 Tage Freiland: Blumenkohle

#### 3 Anwendungsbezogene Anwendungsbestimmungen

(NW605-1)

Die Anwendung des Mittels auf Flächen in Nachbarschaft von Oberflächengewässern - ausgenommen nur gelegentlich wasserführende, aber einschließlich periodisch wasserführender Oberflächengewässer - muss mit einem Gerät erfolgen, das in das Verzeichnis "Verlustmindernde Geräte" vom 14. Oktober 1993 (Bundesanzeiger Nr. 205, S. 9780) in der jeweils geltenden Fassung eingetragen ist. Dabei sind, in Abhängigkeit von den unten aufgeführten Abdriftminderungsklassen der verwendeten Geräte, die im Folgenden genannten Abstände zu Oberflächengewässern einzuhalten. Für die mit "\*" gekennzeichneten Abdriftminderungsklassen ist, neben dem gemäß Länderrecht verbindlich vorgegebenen Mindestabstand zu Oberflächengewässern, das Verbot der Anwendung in oder unmittelbar an Gewässern in jedem Fall zu beachten.

reduzierte Abstände: 50% 5 m, 75% \*, 90% \*

#### Begründung:

Unter Berücksichtigung der aktuell geltenden Abdrifteckwerte und der maximal zulässigen zusätzlichen Konzentration von 2,7  $\mu$ g Cu/L (abgeleitet aus ELS-Test mit O. mykiss, LC10 = 3,7  $\mu$ g Cu/L, natürliche Hintergrundkonzentration des Testwassers = 1  $\mu$ g Cu/L) errechnen sich für die beantragte Indikation des Pflanzenschutzmittels die im UBA-Bewertungsbericht dargestellten Konzentrationen im Oberflächengewässer mit den jeweils korrespondierenden TER-Werten. Nach dem Stand der wissenschaftlichen Erkenntnisse ist die ebendort ausgewiesene indikationsspezifische Anwendungsbestimmung erforderlich, um einen ausreichenden Schutz von Gewässerorganismen vor Einträgen des Wirkstoffs Kupferhydroxid in Oberflächengewässer zu gewährleisten.

#### (NW606)

Ein Verzicht auf den Einsatz verlustmindernder Technik ist nur möglich, wenn bei der Anwendung des Mittels mindestens unten genannter Abstand zu Oberflächengewässern - ausgenommen nur gelegentlich wasserführende, aber einschließlich periodisch wasserführender Oberflächengewässer - eingehalten wird. Zuwiderhandlungen können mit einem Bußgeld bis zu einer Höhe von 50.000 Euro geahndet werden.

5 m

Begründung:

Siehe unter NW605-1.

# REGISTRATION REPORT Part B

Section 7: Metabolism and Residues
Detailed summary of the risk assessment

Product name: Cuprozin progress

Active Substance: Copper hydroxide 383 g/kg

(Copper 250 g/kg)

# Central Zone

Zonal Rapporteur Member State: Germany

# **CORE ASSESSMENT**

Extension of use according to article 51

Applicant: Spiess-Urania Chemicals GmbH

Date: June 2019

# Version history

| When      | What                                       |
|-----------|--------------------------------------------|
| June 2019 | Draft Registration Report: zRMS assessment |
|           |                                            |

# Table of Contents

| 7                  | Metabolism and residue data (KCA section 6)                                                                          | 4  |
|--------------------|----------------------------------------------------------------------------------------------------------------------|----|
| 7.1                | Summary and zRMS Conclusion                                                                                          | 4  |
| 7.1.1              | Critical GAP and overall conclusion                                                                                  |    |
| 7.1.2              | Summary of the evaluation                                                                                            | 6  |
| 7.1.2.1            | Summary for copper hydroxide (copper)                                                                                | 6  |
| 7.1.2.2            | Summary for Cuprozin progress                                                                                        | 6  |
| 7.2                | Copper hydroxide                                                                                                     | 7  |
| 7.2.1              | Magnitude of residues in plants (KCA 6.3)                                                                            | 8  |
| 7.2.2              | Magnitude of residues in livestock                                                                                   |    |
| 7.2.3              | Magnitude of residues in processed commodities (Industrial Processin and/or Household Preparation) (KCA 6.5.2-6.5.3) |    |
| 7.2.4              | Magnitude of residues in representative succeeding crops                                                             |    |
| 7.2.5              | Other / special studies (KCA 6.10, 6.10.1)                                                                           |    |
| 7.2.6              | Estimation of exposure through diet and other means (KCA 6.9)                                                        | 9  |
| 7.2.6.1            | Input values for the consumer risk assessment                                                                        |    |
| 7.2.6.2            | Conclusion on consumer risk assessment                                                                               | 10 |
| 7.3                | Combined exposure and risk assessment                                                                                | 11 |
| 7.4                | References                                                                                                           | 11 |
| Appendix 1         | Lists of data considered in support of the evaluation                                                                | 12 |
| Appendix 2         | Detailed evaluation of the additional studies relied upon                                                            | 15 |
| A 2.1              | Stability of residues                                                                                                | 15 |
| A 2.2              | Nature of residue in plants                                                                                          | 15 |
| A 2.3              | Nature of residues in livestock                                                                                      | 15 |
| A 2.4              | Magnitude of residues in plants                                                                                      |    |
| A 2.4.1            | Flowering brassica                                                                                                   |    |
| A 2.5              | Livestock feeding studies                                                                                            |    |
| A 2.6              | Magnitude of residues in processed commodities (Industrial Processin                                                 | ıg |
| . 2.7              | and/or Household Preparation)                                                                                        |    |
| A 2.7              | Magnitude of residues in representative succeeding crops                                                             |    |
| A 2.8              | Other/Special Studies                                                                                                | 21 |
| Appendix 3         | Pesticide Residue Intake Model (PRIMo)                                                                               | 22 |
| A 3.1              | TMDI calculation                                                                                                     |    |
| A 3.2              | IEDI calculations                                                                                                    |    |
| A 3.2.1            | Scenario 1 (EFSA PRIMo rev. 2)                                                                                       |    |
| A 3.2.2            |                                                                                                                      |    |
|                    | Scenario 2 (EFSA PRIMo rev. 2)                                                                                       |    |
| A 3.2.3<br>A 3.2.4 | Scenario 2 (EFSA PRIMo rev. 2)                                                                                       | 23 |

#### General comment of zRMS

Germany as zRMS has written this section of dRR as part of the application for extension of uses according to article 51 of Regulation (EC) No 1107/2009 for the present product. Thus, the document represents completely the results of the exposure and risk assessment conducted by the zRMS regarding the above-mentioned product in the intended uses according to the application submitted by the applicant, unless stated otherwise.

# 7 Metabolism and residue data (KCA section 6)

#### 7.1 Summary and zRMS Conclusion

#### 7.1.1 Critical GAP and overall conclusion

#### Selection of critical use and justification

The critical GAP with respect to consumer intake and risk assessment for the preparation Cuprozin progress is presented in Table 7.1-1.

#### **Overall conclusion**

The data available are considered sufficient for risk assessment. An exceedance of the current MRL of 20 mg/kg for copper in flowering brassica as laid down in Reg. (EC) No 396/2005 is not expected.

The chronic and the short-term intakes of copper residues via flowering brassica are unlikely to present a public health concern.

As far as consumer health protection is concerned, BfR/Germany agrees with the authorization of the intended use.

#### Data gaps

No data gaps were noticed.

Table 7.1-1: Acceptability of critical GAPs (and respective fall-back GAPs, if applicable)

| 1    | 2        | 3                                                                    | 4                                         | 5                                                              | 6                | 7                                            | 8                                          | 9                                                  | 10                                                                       | 11                                                                 | 12                            | 13 | 14                                                |
|------|----------|----------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|----|---------------------------------------------------|
| Use- | Member   | Crop and/                                                            | F,                                        | Pests or Group of pests                                        |                  | Appl                                         | lication                                   |                                                    | Ap                                                                       | plication rate                                                     |                               | 1  | Conclusion /                                      |
| No.  | state(s) | or situation (crop destination / purpose of crop) cording to Article | Fn,<br>Fpn<br>G,<br>Gn,<br>Gpn<br>or<br>I | (additionally: developmental stages of the pest or pest group) | Method /<br>Kind | Timing / Growth<br>stage of crop &<br>season | Max. number a) per use b) per crop/ season | Min. interval<br>between<br>applications<br>(days) | L product / ha a) max. rate per appl. b) max. total rate per crop/season | kg as/ha a) max. rate per appl. b) max. total rate per crop/season | Water<br>L/ha<br>min /<br>max |    | Remarks:<br>e.g. g<br>safener/synergist<br>per ha |
| 1    | DE       | Flowering brassica (0241000)                                         | F                                         | downy mildew of crucifers (Peronospora parasitica)             | from<br>BBCH 13  | from BBCH 13                                 | a) 4<br>b) 4                               | 7                                                  | a) 2<br>b) 8                                                             | Copper hydroxide: a) 0.77 b) 3.1 Copper: a) 0.5 b) 2.0             | 400 / 600                     | 7  | A                                                 |

# Remarks

- Use number in accordance with the list of all intended GAPs in Part A / Part B, Section 0 should be given in column 1.
- 2 Use official codes/nomenclatures of EU Member States
- For crops, the EU and Codex classifications (both) should be used; when relevant, the use situation should be described (e.g. fumigation of a structure). Use also code numbers according to Annex I of Regulation (EU) No 396/2005.
- 4 F: professional field use, Fn: non-professional field use, Fpn: professional and non-professional field use, G: professional greenhouse use, Gn: non-professional greenhouse use, Gpn: professional and non-professional greenhouse use, I: indoor application
- 5 Scientific names and EPPO-Codes of target pests/diseases/ weeds or, when relevant, the common names of the pest groups (e.g. biting and sucking insects, soil born insects, foliar fungi, weeds) and the developmental stages of the pests and pest groups at the moment of application must be named.
- Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plants type of equipment used must be indicated.

- 7 Growth stage at first and last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- 8 The maximum number of application possible under practical conditions of use must be provided.
- 9 Minimum interval (in days) between applications of the same product
- For specific uses other specifications might be possible, e.g.: g/m³ in case of fumigation of empty rooms. See also EPPO-Guideline PP 1/239 Dose expression for plant protection products.
- 11 The dimension (g, kg) must be clearly specified. (Maximum) dose of a.s. per treatment (usually g, kg or L product / ha).
- 12 If water volume range depends on application equipments (e.g. ULVA or LVA), it should be mentioned under "application: method/kind".
- 13 PHI minimum pre-harvest interval
- 14 Remarks may include: Extent of use/economic importance/restrictions

Explanation for Column 14 "Conclusion"

|   | in promise in the constitution of the constitution       |  |  |  |  |  |
|---|----------------------------------------------------------|--|--|--|--|--|
| Α | Sufficient data available, exposure acceptable, safe use |  |  |  |  |  |
| R | Data gap                                                 |  |  |  |  |  |
| N | Exposure not acceptable, no safe use                     |  |  |  |  |  |

#### 7.1.2 Summary of the evaluation

The preparation Cuprozin progress contains the active ingredient copper hydroxide.

Table 7.1-2: Toxicological reference values for the dietary risk assessment of copper

| Reference value | Source                          | Year | Value                         | Study relied upon                                                    | Safety factor        |  |
|-----------------|---------------------------------|------|-------------------------------|----------------------------------------------------------------------|----------------------|--|
| Copper          |                                 |      |                               |                                                                      |                      |  |
| ADI             | EFSA Conclusion<br>ASB2018-1406 | 2018 | 0.15 mg/kg bw/d               | based on human data (WHO value of 0.15 mg Cu/kg bw/day for children) | No SF for human data |  |
| ARfD            |                                 |      | Not allocated – not necessary |                                                                      |                      |  |

# 7.1.2.1 Summary for copper hydroxide (copper)

Table 7.1-3: Summary for copper hydroxide

| Use-<br>No.* | Crop               | Plant<br>metabolism<br>covered? | Sufficient<br>residue<br>trials? | PHI<br>sufficiently<br>supported? |     | MRL<br>compliance | Chronic risk for consumers identified? | Acute risk<br>for<br>consumers<br>identified? |
|--------------|--------------------|---------------------------------|----------------------------------|-----------------------------------|-----|-------------------|----------------------------------------|-----------------------------------------------|
| 1            | Flowering brassica | N/A                             | Yes (10<br>trials)               | Yes                               | N/A | Yes               | No                                     | No                                            |

<sup>\*</sup> Use number(s) in accordance with the list of all intended GAPs in Part A / Part B, Section 0 should be given in column 1

Copper is a mono-atomic element and therefore considered inherently stable. As no metabolites are expected, the nature of residues in primary crops, rotational crops and processed commodities as well as its stability during storage are considered addressed and specific studies were not required. Data on effects of processing on the magnitude of residues, which have been evaluated during the peer-review, the renewal and the MRL review show a slight decrease of residues during cooking.

The relevant residue for monitoring and risk assessment was defined as total copper, including copper residues arising from all forms of copper. Analytical methods for enforcement of mineral copper independently from its chemical form are available.

Copper is a plant micro-nutrient which is naturally taken up from soil via roots. Hence, uptake of geogenic copper from soil is a relevant issue in principle for all soil grown crops and is not necessarily associated to treatments of former crops.

#### 7.1.2.2 Summary for Cuprozin progress

Table 7.1-4: Information on Cuprozin progress (KCA 6.8)

| Crop               | PHI for Cuprozin progress proposed by applicant | PHI sufficiently supported for copper | PHI for Cuprozin<br>progress<br>proposed by zRMS | zRMS Comments<br>(if different PHI<br>proposed) |  |  |
|--------------------|-------------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------|--|--|
| Flowering brassica | 7 days                                          | Yes                                   | 7 days                                           |                                                 |  |  |

#### Assessment

# 7.2 Copper hydroxide

An evaluation of the active substance copper hydroxide was not conducted in the framework of this application according to Article 51 of Regulation (EC) No 1107/2009. It is referred instead to the outcome of the recently issued peer review of the copper compounds copper(I), copper(II) variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper(I) oxide, and Bordeaux mixture (ASB2018-1406). In addition, it is also referred to the results of the review of the existing MRLs for copper compounds according to Article 12 of Regulation (EC) No 396/2005 (ASB2018-2445). Further general data on the active ingredient copper hydroxide are summarized in the table below.

Table 7.2-1: General information on copper hydroxide

| Active substance (ISO Common Name)                                           | Copper hydroxide                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IUPAC                                                                        | Copper (II) hydroxide                                                                                                                                                                                                                                                                      |
| Chemical structure                                                           | Cu(OH) <sub>2</sub>                                                                                                                                                                                                                                                                        |
| Molecular formula                                                            | CuH <sub>2</sub> O <sub>2</sub>                                                                                                                                                                                                                                                            |
| Molar mass                                                                   | 97.6 g/mol                                                                                                                                                                                                                                                                                 |
| Chemical group                                                               | Copper compounds                                                                                                                                                                                                                                                                           |
| Mode of action (if available)                                                | Cu <sup>++</sup> is taken up by the spores during germination and accumulates until a concentration is achieved to kill the spore cell. It is a foliar fungicide with preventive action. Deposits must be on the crop before fungal spores begin to germinate. Similar action in bacteria. |
| Systemic                                                                     | No                                                                                                                                                                                                                                                                                         |
| Companies*                                                                   | European Union Copper Task Force (EUCuTF)                                                                                                                                                                                                                                                  |
| Rapporteur Member State (RMS)                                                | France                                                                                                                                                                                                                                                                                     |
| Approval status                                                              | Approved (01/01/2019) Regulation (EU) 2018/1981                                                                                                                                                                                                                                            |
| Restriction                                                                  | Only uses resulting in a total application of maximum 28 kg of copper per hectare over a period of 7 years shall be authorised.                                                                                                                                                            |
| Review Report                                                                | SANTE/10506/2018 Rev. 5<br>27 November 2018                                                                                                                                                                                                                                                |
| Current MRL regulation                                                       | Regulation (EC) No 149/2008                                                                                                                                                                                                                                                                |
| Peer review of MRLs according to Article 12 of Reg. No 396/2005 EC performed | Yes (EFSA, 2018b, <u>ASB2018-2445</u> )                                                                                                                                                                                                                                                    |
| EFSA Journal: Conclusion on the peer review                                  | Yes (EFSA, 2018a, <u>ASB2018-1406</u> )                                                                                                                                                                                                                                                    |
| Current MRL applications on intended uses                                    | Not applicable                                                                                                                                                                                                                                                                             |

<sup>\*</sup> Notifier in the EU process to whom the a.s. belong(s)

# 7.2.1 Magnitude of residues in plants (KCA 6.3)

#### Available data

A summary of the magnitude of residues of copper hydroxide is given in the following table. For the detailed evaluation of new/additional studies on the magnitude of residues it is referred to Appendix 2.

Table 7.2-2: Summary of EU reported and new data supporting the intended uses of Cuprozin progress and conformity to existing MRL

| Commodity                                              | Source                                                                                                                                                                                       | Residue<br>zone (N-<br>EU, S-<br>EU, EU,<br>outside<br>EU) | GAP Posiduo lovels (mg/kg)                                                                                                                                       | STMR<br>(mg/kg) | HR<br>(mg/kg) | Unrounded<br>OECD<br>calculator<br>MRL<br>(mg/kg) | Current<br>EU MRL<br>(mg/kg) | MRL compliance |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------------------------------------|------------------------------|----------------|
| Flowering<br>brassica<br>(cauliflower<br>and broccoli) | ASB2018-2819<br>ASB2019-5325<br>ASB2019-5326<br>ASB2019-5327<br>ASB2019-5328<br>ASB2019-5329<br>ASB2019-5330<br>ASB2019-5331<br>ASB2019-5331<br>ASB2019-5332<br>ASB2019-5333<br>ASB2019-5333 | N-EU                                                       | Cauliflower: Trials GAP: 4x 0.51 kg Cu/ha, PHI 7d, outdoor E/RA: 5x <2.0 mg/kg  Broccoli: Trials GAP: 4x 0.46-0.53 kg Cu/ha, PHI 7d, outdoor E/RA: 5x <2.0 mg/kg | N/A             |               |                                                   |                              |                |
|                                                        | Overall supporting data for cGAP                                                                                                                                                             | N-EU                                                       | E/RA: 10x <2.0 mg/kg                                                                                                                                             | E/RA: 2.0       | E/RA: 2.0     | N/A                                               | 20.0                         | Yes            |

<sup>\*</sup> Source of EU MRL: Regulation (EC) No 149/2008

#### Conclusion on the magnitude of residues in plants

The data available are considered sufficient for risk assessment. A total of five supervised residue trials on each cauliflower and broccoli were available all conducted according to the critical GAP. According to the extrapolation guideline (SANCO 7525/VI/95 Rev. 10.3, 13 June 2017) four trials on cauliflower and four trials on broccoli are necessary to cover the whole subgroup of flowering brassica, which is the case here. At harvest (PHI: 7 days), residues of copper were always below the LOQ of 2 mg/kg. The data submitted show that no exceedance of the current MRL of 20 mg/kg for flowering brassica is likely.

The maximum storage period of deep-frozen samples is not an issue for copper. Analytical methods for commodities of high water content such as flowering brassica are available and acceptable for enforcing all compounds given in the residue definition.

According to the available data, the intended use on flowering brassica is considered acceptable.

#### 7.2.2 Magnitude of residues in livestock

The crop under evaluation or parts thereof are normally not fed to livestock. Investigation of residues in commodities of animal origin is therefore not necessary.

# 7.2.3 Magnitude of residues in processed commodities (Industrial Processing and/or Household Preparation) (KCA 6.5.2-6.5.3)

Studies investigating the magnitude of residues in processed commodities were reported in the framework of the first peer review (EFSA, 2008) and during the renewal (EFSA, 2018a) as well as in the framework of the MRL review according to Article 12 (EFSA, 2018b). Processing factors were derived for a lot of commodities including cooking and heating processes relevant for the intended use. Based on these data it can be concluded that copper residues are expected to slightly decrease during cooking of flowering brassica. Further data are not considered necessary.

#### 7.2.4 Magnitude of residues in representative succeeding crops

The crops under consideration can be grown in rotation. In EFSA's Conclusion on the peer review (ASB2018-1406) it was stated that "the experts agreed that plant would not absorb more than the essential nutritional amount. Therefore, field trials on rotational crops were not deemed necessary and a comprehensive survey on the copper background levels in plant commodities was used as a surrogate to assess the residue levels in all off-label crops (including rotational crops)." Further investigation of residues in rotational crops is therefore not required.

#### 7.2.5 Other / special studies (KCA 6.10, 6.10.1)

The available data for the copper hydroxide sufficiently address aspects of the residue situation that might arise from the use of Cuprozin progress. Therefore, other special studies are not needed.

#### 7.2.6 Estimation of exposure through diet and other means (KCA 6.9)

Toxicological reference values relevant for dietary risk assessment are reported in the summary of the evaluation (see 7.1.2). As an ARfD was not deemed necessary, an acute risk assessment is not relevant.

#### 7.2.6.1 Input values for the consumer risk assessment

A review of MRLs for copper according to article 12 of Reg. (EC) No 396/2005 has recently been finalised by EFSA (EFSA, 2018b). The MRL proposals derived in the framework of this complex project are based on either discrete agricultural uses or are drawn from monitoring data or from an indicative literature survey for endogenous levels.

Even though the MRL proposals made by EFSA in their assessment are not yet implemented in EU residue legislation, reference is made to EFSA's evaluation as the most comprehensive and up-to-date compilation of copper levels in food and feed.

Table 7.2-3: Input values for the consumer risk assessment

|                                    | Chronic                | risk assessment                                                        | Acute risk assessment                 |         |  |
|------------------------------------|------------------------|------------------------------------------------------------------------|---------------------------------------|---------|--|
| Commodity                          | Input value<br>(mg/kg) | Comment                                                                | Input value<br>(mg/kg)                | Comment |  |
| Risk assessment residue definition | : total copper         |                                                                        |                                       |         |  |
| All commodities                    | STMR or<br>STMR-P      | Data as compiled in<br>Table D.2 in<br>EFSA Journal<br>2018;16(3):5212 | Not applicable as no ARfD is allocate |         |  |

#### 7.2.6.2 Conclusion on consumer risk assessment

Existing uses of copper compounds according to article 12 of Reg. (EC) No 396/2005 (EFSA, 2018b) were recently evaluated. In the framework of this comprehensive exercise, the MRLs based on defined GAPs were compared to monitoring data and maximum background levels (Appendix F of EFSA's RO).

Using revision 2 of the EFSA PRIMo the overall long-term dietary intake was exceeding the ADI for only one 'consumer group' (107% ADI for WHO cluster diet B - which is deemed a rather artificial diet) while for all other diets the chronic exposure is below the ADI, ranging from 14-84% ADI (scenario 1). Several risk mitigation options were rehearsed by EFSA for decision making by risk managers. EFSA identified the main contributors to chronic exposure. For two of the most important contributors (wheat and maize), the copper levels used in this calculation are not associated with a pesticide use in particular. The consumer intake of copper via wheat and maize is due to the background occurrence of copper in these commodities. For sunflower seeds and soya bean, risk migration measures (e.g. withdrawing of the current authorisations) could be proposed. However it was not possible to quantify the effect of such a risk mitigation measure since no GAP-compliant trials were available. The other main drivers of the chronic exposure (lettuce, tomatoes, wine grapes and potatoes) make up 19.9% of the ADI. For these crops several GAPs were reported and EFSA made an attempt to assess the possible impact of eventual risk mitigation measures which could be taken on these crops. A theoretical exposure calculation considering all the above risk mitigation measures was performed (scenario 2). According to the results of this calculation, the highest chronic exposure declined to 91% of the ADI for WHO Cluster diet B. (EFSA, 2018b)

EFSA PRIMo was revised in the meantime and PRIMo revision 3 (update version 3.1) is used for new applications as from 1 February 2018. The calculation of the chronic consumer exposure was therefore updated using the new model version and the same input values as EFSA in the framework of the MRL review according to article 12 of Reg. (EC) No 396/2005 (EFSA, 2018b). The highest chronic exposure was now calculated for NL toddlers (165% ADI). Chronic exposure for all other diets was below the ADI (8-98% ADI). When using the risk mitigation measures proposed by EFSA, only a slight decrease of the chronic exposure was observed (162% ADI for NL toddler), as the highest contributors were maize, spinach and oil palm kernels. The intake of copper via maize is attributed to background occurrence of

copper in this commodity and no refinement is possible. No risk mitigation measures for spinach and oil palm kernels can be proposed. A refinement of the calculation of the overall long-term dietary intake based on EFSA PRIMo rev. 3.1 should be initiated on EU level considering all authorised use as well as European monitoring data.

However, the proposed use on flowering brassica is intended for Germany only. The calculated exposure for German children is significantly lower (77% ADI). Furthermore, the contribution of flowering brassica to the total chronic exposure is insignificant (<1% ADI for all diets). Thus, it can be concluded that the intended use of Cuprozin progress in flowering brassica does not pose unacceptable risks to consumer health in Germany. Extensive calculation sheets are presented in Appendix 3.

| TMDI (% ADI) according to EFSA PRIMo                                         | Not calculated                                                                                     |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| IEDI (% ADI) according to EFSA PRIMo rev. 2 (EFSA, 2018, <u>ASB2018-2445</u> | Scenario 1 (without risk mitigation measure): 107% (based on WHO cluster diet B, mean body weight) |
|                                                                              | Scenario 2 (with risk mitigation measure): 91% (based on WHO cluster diet B, mean body weight)     |
| IEDI (% ADI) according to EFSA PRIMo rev. 3.1                                | Scenario 1 (without risk mitigation measure): 165% (based on NL toddlers, mean body weight)        |
|                                                                              | Scenario 2 (with risk mitigation measure)*: 162% (based on NL toddlers, mean body weight)          |
| IESTI (% ARfD) according to EFSA PRIMo                                       | Not necessary – no ARfD allocated                                                                  |

<sup>\*</sup> Contribution of flowering brassica is <1% ADI

# 7.3 Combined exposure and risk assessment

Not relevant. The product contains only one active substance.

#### 7.4 References

COM, 2009. Review report for the active substance Copper compounds. SANCO/150/08 final. <u>ASB2013-16042</u>.

EFSA (European Food Safety Authority), 2008. Conclusion regarding the peer review of the pesticide risk assessment of the active substance Copper (I), copper (II) variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper (I) oxide, Bordeaux mixture. EFSA Scientific Report (2008) 187. <u>ASB2012-3573</u>

EFSA (European Food Safety Authority), 2018a. Conclusion on the peer review of the pesticide risk assessment of the active substance copper compounds copper(I), copper(II) variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper(I) oxide, Bordeaux mixture. EFSA Journal 2018;16(1):5152, 25pp. https://doi.org/10.2903/j.efsa.2018.5152. ASB2018-1406

EFSA (European Food Safety Authority), 2018b. Reasoned opinion on the review of the existing maximum residue levels for copper compounds according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2018;16(3):5212, 135 pp. https://doi.org/10.2903/j.efsa.2018.5212. ASB2018-2445

France, Germany, 2017. Copper compounds: Renewal Assessment Report revised Vol. 1-3. <u>ASB2017-11786</u>

# Appendix 1 Lists of data considered in support of the evaluation

# List of data submitted by the applicant and relied on

| Data<br>point | Author(s) | Year | Title Company Report No. Source (where different from company) GLP or GEP status Published or not                                                               | Vertebrate<br>study<br>Y/N | Owner               |
|---------------|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|
| KCA 6.3       | Anon.     | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Blumenkohl LR-G-16-KG-F-01-BON-01 GLP: No, Published: No BVL-3676028, <u>ASB2019-5326</u> | N                          | DLR -<br>Rheinpfalz |
| KCA 6.3       | Anon.     | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Blumenkohl LR-G-16-KG-F-01-WET-01 GLP: No, Published: No BVL-3676029, <u>ASB2019-5327</u> | N                          | DLR -<br>Rheinpfalz |
| KCA 6.3       | Anon.     | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Brokkoli LR-G-16-KG-F-03-SCH-01 GLP: No, Published: No BVL-3676030, ASB2019-5328          |                            | DLR -<br>Rheinpfalz |
| KCA 6.3       | Anon.     | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Brokkoli LR-G-16-KG-F-03-WET-01 GLP: No, Published: No BVL-3676031, <u>ASB2019-5329</u>   | N                          | DLR -<br>Rheinpfalz |
| KCA 6.3       | Anon.     | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln Blumenkohl LR-G-17-KG-F-01-BON-01 GLP: No, Published: No BVL-3676032, <u>ASB2019-5330</u>   | N                          | DLR -<br>Rheinpfalz |

| Data<br>point | Author(s)       | Year | Title Company Report No. Source (where different from company) GLP or GEP status Published or not                                                                             | Vertebrate<br>study<br>Y/N | Owner               |
|---------------|-----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|
| KCA 6.3       | Anon.           | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Blumenkohl LR-G-17-KG-F-01-BON-02 GLP: No, Published: No BVL-3676033, <u>ASB2019-5331</u>               | N                          | DLR -<br>Rheinpfalz |
| KCA 6.3       | Anon.           | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Blumenkohl LR-G-17-KG-F-01-WET-01 GLP: No, Published: No BVL-3676034, ASB2019-5332                      |                            | DLR -<br>Rheinpfalz |
| KCA 6.3       | Anon.           | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Brokkoli LR-G-17-KG-F-03-SCH-01 GLP: No, Published: No BVL-3676035, ASB2019-5333                        |                            | DLR -<br>Rheinpfalz |
| KCA 6.3       | Anon.           | 2018 | Vorabbericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Brokkoli LR-G-17-KG-F-03-SCH-02 GLP: No, Published: No BVL-3676036, ASB2019-5334                        |                            | DLR -<br>Rheinpfalz |
| KCA 6.3       | Anon.           | 2018 | Bericht für Rückstandsuntersuchungen mit Pflanzenschutzmitteln - Brokkoli LR-G-17-KG-F-03-WET-01 GLP: No, Published: No BVL-3676037, ASB2019-5335                             |                            | DLR -<br>Rheinpfalz |
| KCA 6.3       | Hildebrand, A.  | 2018 |                                                                                                                                                                               |                            | DLR -<br>Rheinpfalz |
| KCA 6.3       | Offenbächer, G. | 2017 | Residue analysis of Copper hydroxide (Cuprozin Progress) in cauliflower, broccoli and spring onions - Final report AP 01/16 GLP: Yes, Published: No BVL-3676025, ASB2018-2819 |                            | DLR -<br>Rheinpfalz |

# List of data submitted or referred to by the applicant and relied on, but already evaluated at EU peer review

| Data<br>point | Author(s) | Title Company Report No. Source (where different from company) GLP or GEP status Published or not | Vertebrate<br>study<br>Y/N | Owner |
|---------------|-----------|---------------------------------------------------------------------------------------------------|----------------------------|-------|
|               |           | <br>                                                                                              |                            |       |

# List of data submitted by the applicant and not relied on

| Data<br>point | Author(s) | Title Company Report No. Source (where different from company) GLP or GEP status Published or not | Vertebrate<br>study<br>Y/N | Owner |
|---------------|-----------|---------------------------------------------------------------------------------------------------|----------------------------|-------|
|               |           | <br>                                                                                              |                            |       |

# List of data relied on and not submitted by the applicant but necessary for evaluation

| Data<br>point | Author(s) | Title Company Report No. Source (where different from company) GLP or GEP status Published or not | Vertebrate<br>study<br>Y/N | Owner |
|---------------|-----------|---------------------------------------------------------------------------------------------------|----------------------------|-------|
|               |           | <br>                                                                                              |                            |       |

# Appendix 2 Detailed evaluation of the additional studies relied upon

# A 2.1 Stability of residues

No new study submitted nor required.

# A 2.2 Nature of residue in plants

No new study submitted nor required.

#### A 2.3 Nature of residues in livestock

No new study submitted nor required.

# A 2.4 Magnitude of residues in plants

# A 2.4.1 Flowering brassica

Table A 1: Comparison of intended and critical EU GAPs

| Type of GAP                      | Number of applications                                             | Application rate per treatment (precise unit)                                          | Interval<br>between<br>application | Growth stage at last application | PHI (days) |  |  |  |
|----------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------|----------------------------------|------------|--|--|--|
| cGAP EU (RAR, France, 2017)      | Flowering brassica were not an intended use during the peer review |                                                                                        |                                    |                                  |            |  |  |  |
| cGAP EU (Art. 12,<br>EFSA, 2018) | Flowering brassic                                                  | Flowering brassica were not an intended use for northern Europe during the MRL review. |                                    |                                  |            |  |  |  |
| Intended cGAP (number 1*)        | 4                                                                  | 0.77 kg copper<br>hydroxide/ha (0.5<br>kg copper/ha)                                   | 7-10 days                          | From BBCH 13                     | 7 days     |  |  |  |

<sup>\*</sup> Use number(s) in accordance with the list of all intended GAPs in Part B, Section 0

Cuprozin progress / 006895-00/23 Part B – Section 7 - Core Assessment zRMS version

OECD KIIA 6.3 Reference:

see authority registration numbers cited in the remarks columns of the tables below (and study identification as laid Report

down in the reference list)

Guideline(s): in accordance with agreed guidance unless stated otherwise in the commenting box

Deviations: no relevant deviations unless stated otherwise in the commenting box

GLP: see reference list

Acceptability: acceptable unless stated otherwise in the commenting box

#### Table A 2: Summary of residue trials with copper hydroxide

RESIDUES DATA SUMMARY FROM SUPERVISED TRIALS (SUMMARY)

Active ingredient : copper (Application on agricultural and horticultural crops) Crop / crop group : cauliflowers : BRSOB Crop Code

Federal Institute for Risk Assessment, Berlin

Submission date Federal Republic of Germany : 2019-03-26

: 250 g/L (383 g/L copper hydroxide) Indoors / Outdoors Content of a.i. (g/kg or g/l) : Outdoors (Northern and Central Europe)

Formulation (e.g. WP) : SC (suspension concentrate) Other a.i. in formulation : Cuprozin progress Commercial product (name) (content and common name)

Applicant : Spiess-Urania Chemicals Residues calculated as : copper

| 1                     | 2          | 3                             |         | 4              |         | 5                        | 6         | 7        | 8               | 9      | 10                                       |
|-----------------------|------------|-------------------------------|---------|----------------|---------|--------------------------|-----------|----------|-----------------|--------|------------------------------------------|
| Report-No.            | Commodity/ | Date of                       |         | Application    |         | Dates of                 | Growth    | Portion  | Residues        | PHI    | Remarks                                  |
| Location              | Variety    | <ol> <li>Sowing or</li> </ol> | rat     | te per treatme | ent     | treatments               | stage     | analysed | (mg/kg)         | (days) |                                          |
| incl.                 |            | planting                      |         |                |         | or no. of                | at last   |          |                 |        |                                          |
| Postal code           |            | 2) Flowering                  | kg      | Water          | kg      | treatments               | treatment |          |                 |        |                                          |
| and date              |            | 3) Harvest                    | a.i./ha | l/ha           | a.i./hl | and last date            | or date   |          |                 |        |                                          |
|                       | (a)        | (b)                           |         |                |         | (c)                      |           | (a)      |                 | (d)    | (e)                                      |
| study AP 01/16, trial | Synergy    | 1) 2016-05-11                 | 0.51    | 600            | 0.085   | 2016-06-274)             | BBCH 47   | flower   | < 2.0           | 0      | 4) spraying                              |
| LR-G-16-KG-F-01-      |            | (planting)                    | 0.51    | 600            | 0.085   | 2016-07-044)             |           |          | < 2.0           | 3      |                                          |
| WET-01                |            | 3) 2016                       | 0.51    | 600            | 0.085   | 2016-07-11 <sup>4)</sup> |           |          | <u>&lt; 2.0</u> | 7      | analytical method: SOP 6078 Version 01   |
|                       |            |                               | 0.51    | 600            | 0.085   | 2016-07-184)             |           |          | < 2.0           | 10     | LUFA Speyer (ICP-MS),                    |
| Germany (DE)          |            |                               |         |                |         |                          |           |          |                 |        | LOQ(s): 2 mg/kg                          |
| 35516                 |            |                               |         |                |         |                          |           |          |                 |        | max. sample storage time in month(s): 10 |
| Münzenberg            |            |                               |         |                |         |                          |           |          |                 |        |                                          |
|                       |            |                               |         |                |         |                          |           |          |                 |        | ASB2019-5327                             |
| 2018-08-06            |            |                               |         |                |         |                          |           |          |                 |        | ASB2018-2819 (analytical part)           |

| 1                                      | 2          | 3                            |              | 4             |                | 5                                                    | 6         | 7        | 8                    | 9      | 10                                                          |
|----------------------------------------|------------|------------------------------|--------------|---------------|----------------|------------------------------------------------------|-----------|----------|----------------------|--------|-------------------------------------------------------------|
| Report-No.                             | Commodity/ | Date of                      |              | Application   |                | Dates of                                             | Growth    | Portion  | Residues             | PHI    | Remarks                                                     |
| Location                               | Variety    | 1) Sowing or                 | ra           | te per treatm | ent            | treatments                                           | stage     | analysed | (mg/kg)              | (days) |                                                             |
| incl.                                  |            | planting                     | _            |               |                | or no. of                                            | at last   |          |                      |        |                                                             |
| Postal code                            |            | 2) Flowering                 | kg           | Water         | kg             | treatments                                           | treatment |          |                      |        |                                                             |
| and date                               | ( )        | 3) Harvest                   | a.i./ha      | l/ha          | a.i./hl        | and last date                                        | or date   | ()       |                      | (1)    |                                                             |
| 4 1 AD 01/16 4 1                       | (a)        | (b)                          | 0.51         | (00           | 0.005          | (c)<br>2016-08-01 <sup>4)</sup>                      | DDCII 42  | (a)      | - 2.0                | (d)    | (e)                                                         |
| study AP 01/16, trial LR-G-16-KG-F-01- | Clarify F1 | 1) 2016-05-19 (sowing) 2016- | 0.51<br>0.51 | 600<br>600    | 0.085<br>0.085 | 2016-08-017                                          | BBCH 43   | flower   | < 2.0<br>< 2.0       | 0 3    | 4) spraying                                                 |
| BON-01                                 |            | 06-24                        | 0.51         | 600           | 0.085          | 2016-08-154)                                         |           |          | < 2.0<br>< 2.0       | 7      | analytical method:                                          |
| BOILOI                                 |            | (planting)                   | 0.51         | 600           | 0.085          | 2016-08-234)                                         |           |          | $\frac{-2.0}{< 2.0}$ | 10     | SOP 6078 Version 01 LUFA Speyer                             |
| Germany (DE)                           |            | 3) 2016                      |              |               |                |                                                      |           |          |                      |        | (ICP-MS),                                                   |
| 53229                                  |            |                              |              |               |                |                                                      |           |          |                      |        | LOQ(s): 2 mg/kg                                             |
| Bonn, Roleber                          |            |                              |              |               |                |                                                      |           |          |                      |        | max. sample storage time in month(s): 9                     |
| 2018-08-06                             |            |                              |              |               |                |                                                      |           |          |                      |        | ASB2019-5326                                                |
| 2010 00 00                             |            |                              |              |               |                |                                                      |           |          |                      |        | ASB2018-2819 (analytical part)                              |
| study AP 01/17, trial                  | Synergy    | 1) 2017-06-08                | 0.51         | 600           | 0.085          | 2017-07-184)                                         | BBCH 49   | flower   | < 2.0                | 7      | 4) spraying                                                 |
| LR-G-17-KG-F-01-                       | , 6,       | (planting)                   | 0.51         | 600           | 0.085          | 2017-07-274)                                         |           |          |                      |        | , , ,                                                       |
| WET-01                                 |            | 3) 2017                      | 0.51         | 600           | 0.085          | 2017-08-024)                                         |           |          |                      |        | analytical method:                                          |
| C (DE)                                 |            |                              | 0.51         | 600           | 0.085          | 2017-08-09 <sup>4)</sup>                             |           |          |                      |        | SOP 6078 Version 01 LUFA Speyer                             |
| Germany (DE)<br>35516                  |            |                              |              |               |                |                                                      |           |          |                      |        | (ICP-MS),                                                   |
| Münzenberg                             |            |                              |              |               |                |                                                      |           |          |                      |        | LOQ(s): 2 mg/kg<br>max. sample storage time in month(s): 10 |
| Withizenberg                           |            |                              |              |               |                |                                                      |           |          |                      |        | max. sample storage time in month(s). To                    |
| 2018-08-06                             |            |                              |              |               |                |                                                      |           |          |                      |        | ASB2019-5332                                                |
|                                        |            |                              |              |               |                |                                                      |           |          |                      |        | ASB2019-5325 (analytical part)                              |
| study AP 01/17, trial                  | Clarify F1 | 1) 2017-05-31                | 0.51         | 600           | 0.085          | 2017-08-144)                                         | BBCH 41   | flower   | < 2.0                | 7      | 4) spraying                                                 |
| LR-G-17-KG-F-01-                       |            | (sowing) 2017-               | 0.51         | 600           | 0.085          | 2017-08-224)                                         |           |          |                      |        |                                                             |
| BON-01                                 |            | 06-29                        | 0.51         | 600           | 0.085          | 2017-08-294)                                         |           |          |                      |        | analytical method:                                          |
| Germany (DE)                           |            | (planting) 3) 2017           | 0.51         | 600           | 0.085          | 2017-09-054)                                         |           |          |                      |        | SOP 6078 Version 01 LUFA Speyer (ICP-MS),                   |
| 50765                                  |            | 3) 2017                      |              |               |                |                                                      |           |          |                      |        | LOQ(s): 2 mg/kg                                             |
| Bonn, Roleber                          |            |                              |              |               |                |                                                      |           |          |                      |        | max. sample storage time in month(s): 9                     |
| ,                                      |            |                              |              |               |                |                                                      |           |          |                      |        |                                                             |
| 2018-08-06                             |            |                              |              |               |                |                                                      |           |          |                      |        | ASB2019-5330                                                |
|                                        |            |                              |              |               |                |                                                      |           |          |                      |        | ASB2019-5325 (analytical part)                              |
| study AP 01/17, trial                  | Lecanu     | 1) 2017-04-13                | 0.51         | 600           | 0.085          | 2017-06-144)                                         | BBCH      | flower   | <u>&lt; 2.0</u>      | 7      | 4) spraying                                                 |
| LR-G-17-KG-F-01-                       |            | (planting)                   | 0.51         | 600           | 0.085          | 2017-06-214)                                         | 42-43     |          |                      |        |                                                             |
| BON-02                                 |            | 3) 2017                      | 0.51<br>0.51 | 600<br>600    | 0.085<br>0.085 | 2017-06-28 <sup>4)</sup><br>2017-07-05 <sup>4)</sup> |           |          |                      |        | analytical method:<br>SOP 6078 Version 01 LUFA Speyer       |
| Germany (DE)                           |            |                              | 0.51         | 000           | 0.003          | 2017-07-03                                           |           |          |                      |        | (ICP-MS),                                                   |
| 32051                                  |            |                              |              |               |                |                                                      |           |          |                      |        | LOQ(s): 2 mg/kg                                             |
| Herford                                |            |                              |              |               |                |                                                      |           |          |                      |        | max. sample storage time in month(s): 11                    |
| 2019 09 06                             |            |                              |              |               |                |                                                      |           |          |                      |        | ASB2019-5331                                                |
| 2018-08-06                             |            |                              |              |               |                |                                                      |           |          |                      |        | ASB2019-5331<br>ASB2019-5325 (analytical part)              |
|                                        |            |                              |              |               |                |                                                      |           |          |                      |        | (unarytical part)                                           |

#### Cuprozin progress / 006895-00/23 Part B – Section 7 - Core Assessment zRMS version

- According to CODEX Classification / Guide Only if relevant
- (a) (b) (c) Year must be indicated
- (d)
- Days after last application (Label pre-harvest interval, PHI, underline)
  Remarks may include: Climatic conditions; Reference to analytical method and information which metabolites are included

Comments of zRMS: Acceptable. Trials conducted according to the critical GAP.

#### RESIDUES DATA SUMMARY FROM SUPERVISED TRIALS (SUMMARY)

(Application on agricultural and horticultural crops)

Crop / crop group Crop Code

: asparagus broccoli : BRSOK

: copper

Federal Institute for Risk Assessment, Berlin

Federal Republic of Germany

Submission date

Active ingredient

: 2019-03-26

Content of a.i. Formulation

: 250 g/L (383 g/L copper hydroxide) (g/kg or g/l) : SC (suspension concentrate)

Indoors / Outdoors Other a.i. in formulation : Outdoors (Northern and Central Europe)

Commercial product

(e.g. WP) : Cuprozin progress (name)

(content and common name)

Applicant

: Spiess-Urania Chemicals

Residues calculated as : copper

| 1                     | 2          | 3             |         | 4              |         | 5                                                   | 6         | 7        | 8                     | 9      | 10                                             |
|-----------------------|------------|---------------|---------|----------------|---------|-----------------------------------------------------|-----------|----------|-----------------------|--------|------------------------------------------------|
| Report-No.            | Commodity/ | Date of       |         | Application    |         | Dates of                                            | Growth    | Portion  | Residues              | PHI    | Remarks                                        |
| Location              | Variety    | 1) Sowing or  | ra      | te per treatme | ent     | treatments                                          | stage     | analysed | (mg/kg)               | (days) |                                                |
| incl.                 |            | planting      |         |                |         | or no. of                                           | at last   |          |                       |        |                                                |
| Postal code           |            | 2) Flowering  | kg      | Water          | kg      | treatments                                          | treatment |          |                       |        |                                                |
| and date              |            | 3) Harvest    | a.i./ha | l/ha           | a.i./hl | and last date                                       | or date   |          |                       |        |                                                |
|                       | (a)        | (b)           |         |                |         | (c)                                                 |           | (a)      |                       | (d)    | (e)                                            |
| study AP 01/16, trial | SV1002BL   | 1) 2016-06-07 | 0.51    | 600            | 0.085   | 2016-07-184)                                        | BBCH 49   | flower   | 3.9                   | 0      | 4) spraying                                    |
| LR-G-16-KG-F-03-      |            | (planting)    | 0.51    | 600            | 0.085   | 2016-07-254)                                        |           |          | 3.3                   | 3      |                                                |
| WET-01                |            | 3) 2016       | 0.51    | 600            | 0.085   | 2016-08-014)                                        |           |          | < 2.0                 | 7      | analytical method:                             |
|                       |            |               | 0.51    | 600            | 0.085   | 2016-08-084)                                        |           |          | < 2.0                 | 10     | SOP 6078 Version 01 LUFA Speyer                |
| Germany (DE)          |            |               |         |                |         |                                                     |           |          |                       |        | (ICP-MS),                                      |
| 35516                 |            |               |         |                |         |                                                     |           |          |                       |        | LOQ(s): 2 mg/kg                                |
| Münzenberg            |            |               |         |                |         |                                                     |           |          |                       |        | max. sample storage time in month(s): 9        |
|                       |            |               |         |                |         |                                                     |           |          |                       |        | , ,                                            |
| 2018-08-06            |            |               |         |                |         |                                                     |           |          |                       |        | ASB2019-5329                                   |
|                       |            |               |         |                |         |                                                     |           |          |                       |        | ASB2018-2819 (analytical part)                 |
| study AP 01/16, trial | Ctaal      | 1) 2016-07-18 | 0.51    | 600            | 0.085   | 2016-08-294)                                        | BBCH      | flower   | < 2.0                 | 0      | 4) ammayin a                                   |
| LR-G-16-KG-F-03-      | Steel      | (planting)    | 0.51    | 600            | 0.085   | 2016-08-29                                          | 43-47     | nower    | < 2.0                 | 0 3    | 4) spraying                                    |
| SCH-01                |            | 3) 2016       | 0.51    | 600            | 0.085   | 2016-09-05 <sup>7</sup><br>2016-09-15 <sup>4)</sup> | 43-47     |          |                       | 7      | analytical method: SOP 6078 Version 01         |
| SCH-01                |            | 3) 2016       | 0.51    | 600            | 0.085   | 2016-09-13 (2016-09-234)                            |           |          | $\frac{< 2.0}{< 2.0}$ | 11     | 2                                              |
| Germany (DE)          |            |               | 0.51    | 600            | 0.085   | 2016-09-23                                          |           |          | < 2.0                 | 11     | LUFA Speyer (ICP-MS),                          |
| 67105                 |            |               |         |                |         |                                                     |           |          |                       |        | LOQ(s): 2 mg/kg                                |
| Schifferstadt         |            |               |         |                |         |                                                     |           |          |                       |        | max. sample storage time in month(s): 8        |
| Schillerstadt         |            |               |         |                |         |                                                     |           |          |                       |        | ASB2019-5328                                   |
| 2018-08-06            |            |               |         |                |         |                                                     |           |          |                       |        | ASB2019-5328<br>ASB2018-2819 (analytical part) |
| 2018-08-00            |            |               |         |                |         |                                                     |           |          |                       |        | ASB2018-2819 (analytical part)                 |
| study AP 01/17, trial | Ironman    | 1) 2017-06-08 | 0.51    | 600            | 0.085   | 2017-07-184)                                        | BBCH 49   | flower   | <u>&lt; 2.0</u>       | 7      | 4) spraying                                    |
| LR-G-17-KG-F-03-      |            | (planting)    | 0.51    | 600            | 0.085   | 2017-07-274)                                        |           |          |                       |        |                                                |
| WET-01                |            | 3) 2017       | 0.51    | 600            | 0.085   | 2017-08-024)                                        |           |          |                       |        | analytical method: SOP 6078 Version 01         |
|                       |            |               | 0.51    | 600            | 0.085   | 2017-08-094)                                        |           |          |                       |        | LUFA Speyer (ICP-MS),                          |
| Germany (DE)          |            |               |         |                |         |                                                     |           |          |                       |        | LOQ(s): 2 mg/kg                                |
| 35516                 |            |               |         |                |         |                                                     |           |          |                       |        | max. sample storage time in month(s): 10       |
| Münzenberg            |            |               |         |                |         |                                                     |           |          |                       |        |                                                |
|                       |            |               |         |                |         |                                                     |           |          |                       |        | ASB2019-5335                                   |
| 2018-08-06            |            |               |         |                |         |                                                     |           |          |                       |        | ASB2019-5325 (analytical part)                 |
|                       | 1          | 1             |         |                |         |                                                     | l         |          |                       |        |                                                |

Cuprozin progress / 006895-00/23 Part B – Section 7 - Core Assessment zRMS version

| 1                     | 2          | 3                             |         | 4             |         | 5             | 6         | 7        | 8               | 9      | 10                                             |
|-----------------------|------------|-------------------------------|---------|---------------|---------|---------------|-----------|----------|-----------------|--------|------------------------------------------------|
| Report-No.            | Commodity/ | Date of                       |         | Application   |         | Dates of      | Growth    | Portion  | Residues        | PHI    | Remarks                                        |
| Location              | Variety    | <ol> <li>Sowing or</li> </ol> | ra      | te per treatm | ent     | treatments    | stage     | analysed | (mg/kg)         | (days) |                                                |
| incl.                 |            | planting                      |         |               |         | or no. of     | at last   |          |                 |        |                                                |
| Postal code           |            | 2) Flowering                  | kg      | Water         | kg      | treatments    | treatment |          |                 |        |                                                |
| and date              | ( )        | 3) Harvest                    | a.i./ha | l/ha          | a.i./hl | and last date | or date   |          |                 | 7.10   |                                                |
|                       | (a)        | (b)                           |         |               |         | (c)           |           | (a)      |                 | (d)    | (e)                                            |
| study AP 01/17, trial | Steel      | 1) 2017-07-03                 | 0.46    | 370           | 0.13    | 2017-08-144)  | BBCH      | flower   | <u>&lt; 2.0</u> | 7      | 4) spraying                                    |
| LR-G-17-KG-F-03-      |            | (planting)                    | 0.53    | 420           | 0.13    | 2017-08-214)  | 46-48     |          |                 |        |                                                |
| SCH-01                |            | 3) 2017                       | 0.46    | 370           | 0.13    | 2017-08-284)  |           |          |                 |        | analytical method: SOP 6078 Version 01         |
|                       |            |                               | 0.46    | 370           | 0.13    | 2017-09-044)  |           |          |                 |        | LUFA Speyer (ICP-MS),                          |
| Germany (DE)          |            |                               |         |               |         |               |           |          |                 |        | LOQ(s): 2 mg/kg                                |
| 67105                 |            |                               |         |               |         |               |           |          |                 |        | max. sample storage time in month(s): 9        |
| Schifferstadt         |            |                               |         |               |         |               |           |          |                 |        | A CD2010 5222                                  |
| 2018-08-06            |            |                               |         |               |         |               |           |          |                 |        | ASB2019-5333<br>ASB2019-5325 (analytical part) |
|                       |            |                               |         |               |         |               |           |          |                 |        | ASBZ019-33Z3 (analytical part)                 |
| study AP 01/17, trial | Naxos      | 1) 2017-07-03                 | 0.48    | 380           | 0.13    | 2017-08-144)  | BBCH      | flower   | <u>&lt; 2.0</u> | 7      | 4) spraying                                    |
| LR-G-17-KG-F-03-      |            | (planting)                    | 0.51    | 410           | 0.13    | 2017-08-214)  | 48-49     |          |                 |        |                                                |
| SCH-02                |            | 3) 2017                       | 0.46    | 370           | 0.13    | 2017-08-284)  |           |          |                 |        | analytical method: SOP 6078 Version 01         |
|                       |            |                               | 0.46    | 370           | 0.13    | 2017-09-044)  |           |          |                 |        | LUFA Speyer (ICP-MS),                          |
| Germany (DE)          |            |                               |         |               |         |               |           |          |                 |        | LOQ(s): 2 mg/kg                                |
| 67105                 |            |                               |         |               |         |               |           |          |                 |        | max. sample storage time in month(s): 9        |
| Schifferstadt         |            |                               |         |               |         |               |           |          |                 |        | L GD2010 5224                                  |
| 2010 00 00            |            |                               |         |               |         |               |           |          |                 |        | ASB2019-5334                                   |
| 2018-08-06            |            |                               |         |               |         |               |           |          |                 |        | ASB2019-5325 (analytical part)                 |

- According to CODEX Classification / Guide
- (b) Only if relevant
- Year must be indicated
- Days after last application (Label pre-harvest interval, PHI, underline)
  Remarks may include: Climatic conditions; Reference to analytical method and information which metabolites are included

Comments of zRMS: Acceptable. Trials conducted according to the critical GAP.

# A 2.5 Livestock feeding studies

No new study submitted nor required.

# A 2.6 Magnitude of residues in processed commodities (Industrial Processing and/or Household Preparation)

No new study submitted nor required.

# A 2.7 Magnitude of residues in representative succeeding crops

No new study submitted nor required.

# A 2.8 Other/Special Studies

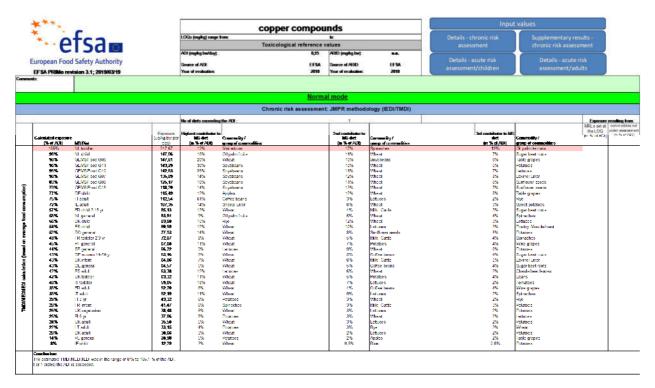
No new study submitted nor required.

# **Appendix 3** Pesticide Residue Intake Model (PRIMo)

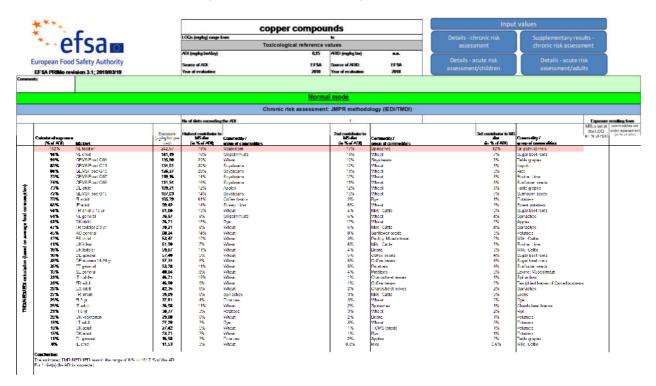
# A 3.1 TMDI calculation

Not calculated.

# A 3.2 IEDI calculations


# A 3.2.1 Scenario 1 (EFSA PRIMo rev. 2)

|                                                                                                  |                       | copper cor                 | mnounds              |                                       | Prepa                     | re workbook for refine<br>calculations | a        |
|--------------------------------------------------------------------------------------------------|-----------------------|----------------------------|----------------------|---------------------------------------|---------------------------|----------------------------------------|----------|
|                                                                                                  | Status of the active  |                            | Code no.             |                                       |                           | Calculations                           |          |
|                                                                                                  | LOQ (mg/kg bw):       | 3000000                    | proposed LOQ:        |                                       |                           |                                        |          |
|                                                                                                  |                       | Toxicological              | l end points         |                                       |                           |                                        |          |
|                                                                                                  | ADI (mg/kg bw/day     |                            |                      | n.n.                                  | Und                       | o refined calculations                 |          |
|                                                                                                  | Source of ADt:        | EFSA                       | Source of ARfD:      | EFSA                                  |                           |                                        |          |
|                                                                                                  | Year of evaluation    |                            |                      | 2018                                  |                           |                                        |          |
| essessment has been performed on the basis of th<br>RLs have been submitted to EFSA in September |                       |                            |                      |                                       | ed (proposed temporary MR | L = pTMRL).                            |          |
|                                                                                                  |                       | Chronic risk assess        | ment - refined ca    | Iculations                            |                           |                                        |          |
|                                                                                                  |                       | TMDI (                     | range) in % of ADI   |                                       |                           |                                        |          |
|                                                                                                  |                       |                            | inum - maximum       |                                       |                           |                                        |          |
|                                                                                                  |                       |                            | 107                  |                                       |                           |                                        |          |
|                                                                                                  | Na of diets excee     | _                          |                      |                                       |                           |                                        |          |
| Highest calculated                                                                               | Highest contributo    |                            | 2nd contributor to   |                                       | 3rd contributor to        |                                        | p1 MRL   |
| IMDIvalues n %                                                                                   | to MS diet            | Commodity/                 | MSdet                | Commodity /                           | MSdet                     | Commodity/                             | LOG      |
| of ADI MS Diel 106.6 WHO Cluster diet B                                                          | (in % of ADI)<br>23.6 | greep of commodifies Wheat | (in % of ADI)<br>9,1 | group of exeminedities Sunflower seed | (in % of ADI)             | group of commodifies Lettuce           | (in % of |
| 63.6 IF askall                                                                                   | 13.6                  | Sheep Live                 | 9,1<br>6, <b>4</b>   | Mai/c                                 | 8,3<br>6,4                | Maire                                  |          |
| 83.4 NL child                                                                                    | 13.1                  | Wheat                      | 8,5                  | Someth                                | 7.9                       | l'otates                               |          |
| 70.2 DF child                                                                                    | 11.4                  | Wical                      | 11.3                 | Applied                               | 7.4                       | Table grapes                           |          |
| 60:0 FR loddler                                                                                  | 16.3                  | Spinach                    | 7,3                  | Wheat                                 | 7.0                       | Look                                   |          |
| 59.9 WHO duster diet E.                                                                          | 10.9                  | Ymest                      | 5.1                  | l'otatoes                             | 4.5                       | Sova bean                              |          |
| 56.3 WHO duster diel D                                                                           | 10.0                  | Wical                      | 6.1                  | Sunlower seed                         | 5,4                       | Polatines                              |          |
| 54.5 DK child                                                                                    | 15.2                  | Wical                      | 122                  | Rue                                   | 7.4                       | Revine Live                            |          |
| 53.6 ES child                                                                                    | 12.3                  | Yfheat                     | 9,6                  | Lettuce                               | 3.0                       | l'outry: Mest                          |          |
| 53.2 UKTodder                                                                                    | 19.1                  | Supplied (rod)             | 10.6                 | Wheat                                 | 4.7                       | Polakes                                |          |
| 51.7 WHO Cluster det F                                                                           | 10,0                  | Ymeat                      | 6,9                  | Lettuce                               | 5,2                       | Sova bean                              |          |
| 50.3 WHO regional European dist                                                                  | 8.7                   | Lettuce                    | 8.2                  | Wheat                                 | 5,4                       | l'otatoes                              |          |
| 42.6 PT General population                                                                       | 10.0                  | Wical                      | 7,1                  | Polaloes                              | 4,2                       | Wine grapes                            |          |
| 42.1 ES adult                                                                                    | 12.4                  | Lettuce                    | 6.5                  | Wheat                                 | 1.9                       | Beet leaves (chard)                    |          |
| 42,1 UK Infani                                                                                   | 8,4                   | Sugar hed (rod)            | 7,3                  | Wheel                                 | 5,3                       | Revine Live                            |          |
| 41,4 NL general                                                                                  | 5,7                   | Wheat                      | 3,7                  | l'otatoes                             | 3,6                       | Cottee bears                           |          |
| 40.2 FR infant                                                                                   | 10.2                  | Spinadi                    | 5,5                  | Polatoes                              | 4,1                       | Milk and milk products. Callle         |          |
| 39,0 IT kills/loddler                                                                            | 10,4                  | Wiesi                      | 6,7                  | l elluce                              | 2.4                       | Temalocs                               |          |
| 35,1 FR all population                                                                           | 9,1                   | Yfheat                     | 5,8                  | Wine grapes                           | 4,0                       | Sunliowerseed                          |          |
| 34,0 IT aduli                                                                                    | 11,4                  | Wied                       | 8,7                  | l elluce                              | 2,2                       | Spinedi                                |          |
| 31,8 SE general population 90th p                                                                |                       | Wheat                      | 5,6                  | l'otatoes                             | 2,0                       | Milk and milk products: Calife         |          |
| 27,8 UK vegetanan                                                                                | 5,/                   | Wheat                      | 3,3                  | Lettuce                               | 3,1                       | Sugar beet (root)                      |          |
| 24,5 UK Adul                                                                                     | 4,6                   | Wieal                      | 3,3                  | Sugar best (roof)                     | 2,7                       | I effuce                               |          |
| 22,1 Li adult                                                                                    | 1,2                   | Potatoes                   | 3,0                  | Rye                                   | 2,9                       | Wheat                                  |          |
| 20,9 DKadult<br>16.0 Fladuli                                                                     | 5,5                   | Wheat                      | 3,1                  | Bovine: Liver                         | 2,1                       | Wine grapes                            |          |
|                                                                                                  | 2,7<br>4.5            | Wheat<br>Potatoes          | 2,6<br>1.9           | Coffee beans<br>Apples                | 1,9<br>1.9                | Ryc<br>lableomanes                     |          |
| 14.0 I'L general population                                                                      |                       |                            |                      |                                       |                           |                                        |          |


# A 3.2.2 Scenario 2 (EFSA PRIMo rev. 2)

|                    |                                                                             |                      | copper co            | mpounds                                      |                                | 1104                     | re workbook for refine<br>calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 567        |
|--------------------|-----------------------------------------------------------------------------|----------------------|----------------------|----------------------------------------------|--------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                    |                                                                             | Status of the active |                      | Code no.                                     |                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                    |                                                                             | LOQ (mg/kg bw):      |                      | proposed LOQ:                                |                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                    |                                                                             |                      | Toxicologic          | al end points                                |                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                    |                                                                             | ADI (mg/kg bw/day)   | 0,1                  | 5 ARID (mg/kg bw):                           | n.n.                           | Und                      | o refined calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|                    |                                                                             | Source of ADt        | EF:                  | A Source of ARfD:                            | EFSA                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                    |                                                                             | Year of evaluation:  | 201                  |                                              | 2018                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                    | n performed on the basis of the MRLs on<br>itted to EFSA in September 2006. | collected from Membe |                      |                                              |                                | f (proposed temporary MR | L = pTMRL).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|                    |                                                                             |                      | Chronic risk asses   | sment - refined ca                           | Iculations                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                    |                                                                             |                      |                      | (range) in % of ADI<br>nimum - maximum<br>91 |                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                    |                                                                             | No of diets exceed   |                      |                                              |                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Highest calculated | <u> </u>                                                                    | Highest contributor  |                      | 2nd contributor to                           |                                | 3rd contributor to       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p i MRLs   |
| TMDI values in %   |                                                                             | le MS diel           | Commodity/           | MS did                                       | Commodity?                     | MS did                   | Commodity /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100        |
| of ADI             | MS Diet                                                                     | (in % of ADI)        | group of commodities | (in % of ADI)                                | group of commodities           | (in % of ADI)            | group of exammedities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (in % of / |
|                    | MIO Cluster diel II                                                         | 23,6                 | Wical                | 9,1                                          | Sunlimer send                  | 6,6                      | Maire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|                    | E edult                                                                     | 13,6                 | Sheep: Lwer          | 5,4                                          | Maize                          | 5,4                      | Maze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|                    | NL child                                                                    | 13,1                 | Wheat                | 8,6                                          | Spinech                        | 6,0                      | Apples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|                    | DF child<br>-Rtoddier                                                       | 11,4                 | Wilesi<br>Sorieth    | 11,3                                         | Apples<br>Wheat                | 7.4                      | Table grapes<br>Leek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|                    | MHO cluster diet E.                                                         | 16,3<br>10,9         | Sprison<br>Whest     | 7,3<br>4,5                                   | Sova bean                      | 7,0<br>4,3               | Sunifowerseed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|                    | MIO duster det E                                                            | 10,9                 | Wical                | 6,1                                          | Sunfawer seed                  | 3,5                      | Polakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|                    | UK Lodder                                                                   | 19,1                 | Sugar beet (root)    | 10.8                                         | Wheat                          | 3,7                      | Hearis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|                    | DK child                                                                    | 15.2                 | Wiesi                | 12.2                                         | Rui                            | 7,4                      | Rovine Liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|                    | rs duki                                                                     | 12.3                 | Wical                | 3,6                                          | Poulliy Misal                  | 2,0                      | Milk and milk products Calife                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 41,7               | WHO Cluster diet F                                                          | 10,0                 | Wheat                | 5,2                                          | Soya bean                      | 3,3                      | Coffee beans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 40,1               | UK Infani                                                                   | 8,4                  | Sugar leed (rook)    | 7,3                                          | Wheel                          | 5,3                      | Rovine Liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|                    | WHO regional European diet                                                  | 8,2                  | Yfheat               | 3,5                                          | l'otatoes                      | 2,0                      | l'outry: Mest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|                    | -R intent                                                                   | 10.2                 | Spriech              | 1.1                                          | Milk and milk products: Cattle | 4.1                      | Leek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|                    | NL general<br>PT General population                                         | 5,7<br>10,0          | Wheat<br>Wheat       | 3,5<br>4,6                                   | Coffee beans<br>Polatoes       | 3,3<br>3,5               | Spinech<br>Sunflower seed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                    | Pit Germani jeopananca<br>Tikinstodder                                      | 18,4                 | Wical                | 14                                           | Polatoes<br>Reel kawes (chard) | 1,3                      | Suineer seed<br>Soineth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|                    | SE general population 90th percentile                                       | 8,9                  | Wheat                | 3,5                                          | l'otatoes                      | 2.0                      | Milk and milk products: Calife                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|                    | TS askill                                                                   | 65                   | Wied                 | 1.9                                          | Reet leaves (chard)            | 1.7                      | Spinedi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|                    | -R all population                                                           | 9,1                  | Wheat                | 4,0                                          | Sunflower seed                 | 1,1                      | l'outry: Mest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 24,7               | l adult                                                                     | 11,4                 | Wheat                | 2,2                                          | Spinach                        | 1,4                      | Beet leaves (chard)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
|                    | UK wegetarian                                                               | 5,7                  | Wiesi                | 3,1                                          | Sugar beel (roof)              | 1,7                      | Roare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|                    | UKAdult                                                                     | 4,5                  | Wheat                | 3,3                                          | Sugar beet (root)              | 1,1                      | HOPS (dred),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|                    | LI adult                                                                    | 3,0                  | Rye                  | 2,9                                          | Wheat                          | 2,8                      | l'otatoes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                    | DKaduli<br>Hisoluk                                                          | 5,6<br>2,7           | Wheat<br>Wheat       | 3,1<br>2,5                                   | Rovine Liver<br>Cottee beans   | 1,9<br>1,9               | Ryc<br>Rve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|                    | ri soux<br>Placesateopelation                                               | 3.0                  | Polatoes             | 1.9                                          | Corree beans<br>Apples         | 1,9                      | Table grapes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|                    |                                                                             |                      | F TRANSPORT          | 1 1,22                                       | r spipmen                      | 1,0                      | Comment of the State of the Sta |            |

# A 3.2.3 Scenario 1 (EFSA PRIMo rev. 3.1)



# A 3.2.4 Scenario 2 (EFSA PRIMo rev. 3.1)

