Zusammengefasster Kommentar (Kurzform)	Stellungnahme der Autoren
1. Allgemeine Kommentare (Gliederung, Zielstellung)	
Die Aufteilung des Berichts in vier voneinander unabhängige Module	Um die behandelten Themenbereiche auch als voneinander unabhängige Texte
führt zu Redundanzen und trägt nicht zur Verbesserung des	verwenden zu können, erfolgte die Aufteilung des Berichtes in vier separate Module.
Verständnisses der Thematik bei.	
Es ist unklar, welche Zielgruppe mit dem Bericht erreicht werden soll.	Der Bericht wurde auf Veranlassung des BMEL erstellt. Er soll gemäß Grünbuch den
Während in einigen Textpassagen Grundlagenwissen erläutert wird,	Dialogprozess des BMEL zu NMT in Deutschland und der EU unterstützen. Zweck des
beschreiben andere Passagen wissenschaftliche Zusammenhänge in	Berichts ist daher in erster Linie Politikberatung und nicht die Information der
einer Detailtiefe, die für Laien nicht zu verstehen ist. Es sollte eine	Öffentlichkeit. Unter dieser Prämisse haben die Autoren versucht, den Bericht so zu
zielgruppenorientierte Harmonisierung der entsprechenden Passagen	schreiben, dass er auch für Nichtwissenschaftler verständlich ist. Wissenschaftliche
angestrebt werden.	Korrektheit hatte im Zweifelsfall Vorrang vor Allgemeinverständlichkeit.
Der Bericht greift zu kurz, da er die Frage der rechtlichen Einordnung	Die an den aktuellen Bericht gestellte Anforderung umfasst ausschließlich die
von Organismen, die aus der Anwendung der Techniken resultieren,	Darstellung der naturwissenschaftlichen Fachzusammenhänge der Anwendung neuer
nicht behandelt. Diese ist jedoch äußerst relevant gerade für die	Techniken in der Pflanzenzüchtung und Tierzucht. Die Frage der rechtlichen
Bewertung einer Nutzung im Bereich der Land- und	Einordnung wird in dem aktuellen Bericht nicht behandelt. Der modulare Aufbau des
Lebensmittelwirtschaft.	Berichtes ermöglicht die Erweiterung um Module zu weiteren Fragestellungen, z. B.
	auch der rechtlichen Einordnung.
Der Bericht ist ohne eine Betrachtung der sozioökonomischen Folgen	In Abstimmung mit dem BMEL wurde unter Berücksichtigung der zur Verfügung
wertlos.	stehenden Zeit entschieden, ein Modul zu den sozioökonomischen Betrachtungen, in
	dem die Folgen der Anwendung der neuen Techniken den Folgen der
	Nichtanwendung gegenübergestellt werden, zu einem späteren Zeitpunkt zu
	erstellen.
Eine Betrachtung der Folgen der Techniken aus ethischer Sicht fehlt.	Zu den ethischen Fragestellungen hat BMEL ein eigenes Gutachten in Auftrag
	gegeben. Sie sind daher nicht Gegenstand des vorliegenden Berichts.
Die Entscheidung, "Gene Drives" nicht zu behandeln, da ihre Nutzung	Die Einschätzung, dass praxistaugliche "Gene Drive"-Systeme frühestens in etwa 10
im Bereich der Tier- und Pflanzenzüchtung nach gegenwärtigem	Jahren zur Verfügung stehen werden und dass erste potenzielle Anwendungen nicht
Kenntnisstand nicht wahrscheinlich sei, ist nicht nachvollziehbar.	im Bereich der Tier- und Pflanzenzüchtung liegen werden, sondern im Bereich der
	Bekämpfung von Krankheiten des Menschen, beruht auf übereinstimmenden
	Aussagen von Wissenschaftlern, die an "Gene Drives" arbeiten.
Der Bericht sollte präziser zwischen SDN 1-, SDN 2- und SDN 3-	SDN 1-, SDN 2- und SDN 3-Verfahren nutzen ortspezifische Nukleasen, die sich, soweit
Verfahren differenzieren. Die unterschiedlichen Verfahren führen zu	es sich um den gleichen Zielort im Genom handelt, nicht im Design unterscheiden. Sie
unterschiedlichen Off-Target-Effekten und haben einen	unterscheiden sich daher auch nicht in etwaigen Off-Target-Effekten.
unterschiedlichen Einfluss auf die Nachweisbarkeit.	Für die Nachweisbarkeit wird auf den Modulteil 5.5 verwiesen, in dem umrissen wird,

Zusammengefasster Kommentar (Kurzform)	Stellungnahme der Autoren
	wie Mutationen, Gensequenzen und technische Eingriffe nachgewiesen werden
	können. Vereinfacht kann man sagen, dass sich artfremde Gensequenzen
	vergleichsweise leicht identifizieren lassen, Punktmutationen und Allelaustausch
	innerhalb der Spannbreite der natürlichen Variation eines Genoms lassen sich im
	Vergleich von Genomen nachweisen, jedoch nicht eindeutig einem technischen
	Eingriff oder einem natürlichen Entstehungsprozess zuordnen.
"Spezifische Merkmale der Genome Editing-Techniken"	
Risiken, die sich aus den erzeugten Eigenschaften ergeben könnten,	Ziel des vorliegenden Berichts ist es, Risiken, die mit der Anwendungen bestimmter
werden nicht betrachtet, "da diese unabhängig von der eingesetzten	Züchtungsmethoden einhergehen können, zu vergleichen. Risiken, die sich aus den
Züchtungsmethode zu betrachten sind". Das ist problematisch, da die	absichtlich veränderten Eigenschaften von Organismen ergeben können, sind im
eingesetzte Züchtungsmethode einen erheblichen Einfluss darauf hat,	Einzelfall unter Berücksichtigung der veränderten Eigenschaft und im Kontext
wie wahrscheinlich die Entwicklung bestimmter Eigenschaften ist.	vergleichbarer, bereits existierender Organismen zu bewerten. Eine Betrachtung
	veränderter Eigenschaften würde jedoch auf eine Bewertung landwirtschaftlicher
	Züchtungsziele hinauslaufen und damit den Rahmen des vorliegenden Berichts
	überschreiten.
Mögliche Folgen von Nebeneffekten im Zielgenom bleiben bei vielen	Der Bericht behandelt eingehend die Wahrscheinlichkeit des Auftretens
Anwendungen in der Forschung oder auch in der biotechnologischen	unbeabsichtigter Veränderungen im Zielgenom bei Anwendung unterschiedlicher
Produktion wahrscheinlich folgenlos, weil die erzeugten Organismen	Züchtungsmethoden (herkömmliche Züchtungstechniken, neue molekulare
nach Gebrauch inaktiviert werden, während dies im Bereich	Techniken, "klassische" Gentechnik). Die Folgen solcher unbeabsichtigter
medizinischer Anwendungen oder solchen in der	Veränderungen hängen dabei selbstverständlich ganz wesentlich davon ab, wofür die
Lebensmitteltechnologie nicht so sein muss.	generierten Organismen verwendet werden (z. B. Forschung, Produktion von Lebens-
	oder Futtermitteln, medizinische Anwendungen).
Der Eindruck wird vermittelt, dass neben den diskutierten	Es war nicht Aufgabe des Berichtes, das gesamte Spektrum aller Züchtungsarten zu
Züchtungsarten keine weiteren bestehen.	diskutieren. Der eingeschränkte Diskussionsrahmen des Berichtes ist im Titel klar
	umrissen.
Um biologische Effekte zu erfassen, die für die Risikobewertung	Die Veränderung der Sequenz bzw. Struktur der DNA eines Organismus ist nur der
relevant sind, muss man über die Ebene der DNA hinausgehen und	Ausgangspunkt für die Risikobewertung eines genetisch veränderten Organismus.
die Zellen und ganzen Organismen und deren Wechselwirkungen mit	Entscheidend ist, ob diese Veränderung zu einem veränderten Phänotyp (=
der Umwelt einbeziehen. Aus der Veränderung der Struktur der DNA	veränderte Eigenschaften) führt und welche Folgen der ggf. veränderte Phänotyp für
lässt sich oft nicht ableiten, zu welchen biologischen Effekten diese	Wechselwirkungen des Organismus mit anderen Organismen und der abiotischen
führt.	Umwelt hat. Daher spielt bei der Bewertung von Organismen mit einem veränderten
	Genotyp die Bewertung von Veränderungen des Phänotyps die entscheidende Rolle.

Zusammengefasster Kommentar (Kurzform)	Stellungnahme der Autoren
	Das gilt sowohl für Neuzüchtungen mittels herkömmlicher Züchtungsmethoden als
	auch für Neuzüchtungen mittels Gentechnik oder neuer molekularer Methoden.
Die Aussage "Das Genome Editing stellt daher eine deutliche	In keinem Kapitel des Berichts wird dazu aufgefordert, die Nebeneffekte der NMT-
Verbesserung in Präzision, Effizienz und Sicherheit gegenüber	Verfahren zu vernachlässigen. Ziel des Berichts ist es, die technischen und
klassischen Genmodifikations- (Mutagenese) und	wissenschaftlichen Erkenntnisse zu Präzision und Sicherheit des Genome Editing
Gentransferverfahren dar." erscheint zu simplifiziert.	darzulegen und mit etablierten Züchtungsmethoden zu vergleichen.
In den verschiedenen Kapiteln des Berichts wird dargelegt, dass es	Die Aussage, dass über die absolute Off-target Rate keine Aussage getroffen werden
durchaus große Unterschiede in der Häufigkeit von Nichtzieleffekten	kann, bezieht sich lediglich auf das Base Editing und auch nur auf Pflanzen, da diese
(off-target effects) gibt. In Fachkreisen ist man bemüht, methodische	Technik bei Pflanzen bisher nur experimentell angewendet wurde.
Alternativen zu finden, die weniger off-target-Effekte zeigen, wie z. B.	
Cpf1. Die Tatsache, dass hier Verbesserungen erreicht wurden und	
sicher noch weiter möglich sind, bedeutet jedoch nicht, dass bei allen	
NMT-Verfahren einschließlich der älteren die Nebeneffekte wie Off-	
target-Effekte oder pleiotrope Effekte vernachlässigt werden können.	
Mitunter heißt es im Bericht auch, dass über die absolute Off-target-	
Rate derzeit keine Aussage getroffen werden kann.	
Die Aussage, dass es für Nebeneffekte zuverlässige und ausreichend	Der Bericht hat nicht die Zielsetzung, regulatorische Fragen zu diskutieren. Die
sensitive Nachweisverfahren gibt, ist von begrenzter Aussagekraft,	Zielstellung war und ist, die technischen Möglichkeiten und wissenschaftlichen
solange nicht sichergestellt ist, dass Anwender diese auch nutzen.	Erkenntnisse zum Genome Editing darzustellen. Von einer Ableitung regulatorischer
	Schlussfolgerungen wurde daher abgesehen.
In dem Bericht werden die ungewollten Effekte und die damit	Der Autor skizziert die Darstellung natürlicher Zufallsprozesse (Mutationen),
einhergehenden Risiken mit zufälligen Mutationen und anderen	kurzzeitiger Reparatur- und Regulationsmechanismen der Organismen, langzeitiger
Veränderungen des Erbguts verglichen. Demnach gehen mit zufälligen	Adaptationsprozesse auf Populationsebene bis hin zu Selektion und Evolution.
Mutationen – insbesondere wenn diese durch Bestrahlung oder	Züchtung ist jedoch seit jeher ein aktiver Eingriff des Menschen, diese Prozesse für
Chemikalien im Labor beschleunigt werden – sehr viel mehr zufällige	den eigenen Nutzen zu steuern. Der Unterschied zwischen klassischer Züchtung und
Veränderungen einher als mit einem gentechnischen Eingriff in das	dem Genome Editing ist, dass der züchterische Eingriff nicht mehr nur auf einem
Erbgut.	langwierigen Zufalls- und Auswahlverfahren beruht, sondern durch Kenntnis der
Dieses Argument erscheint zwar auf den ersten Blick naheliegend, ist	Gensequenzen direkt und gezielter erfolgen kann. Die züchterischen Ziele (die
aber tatsächlich wenig geeignet, die Folgen und Risiken von Genome	Selektion angestrebter Eigenschaften) wandeln sich damit nicht. Es macht daher
Editing-Verfahren zu bewerten. Tatsächlich finden andauernd	durchaus Sinn, die Effizienz der züchterischen Verfahren (in jeglicher Hinsicht) zu
Mutationen im Erbgut von Pflanzen und Tieren statt. Erstaunlich ist	vergleichen.
jedoch, dass davon nur ein relativ kleiner Bruchteil zur biologischen	Die Kulturarten wären allein aufgrund natürlicher Prozesse nicht entstanden bzw. die

Zusammengefasster Kommentar (Kurzform)

Wirkung kommt. Für die Erhaltung einer Art müssen zwei wesentliche Grundbedingungen erfüllt sein: steter Wandel und (unter Umständen rasche) Anpassung an wechselnde Umweltbedingungen, aber auch Stabilität bei der Vererbung wichtiger genetischer Grundstrukturen, um die Art über lange Zeiträume zu erhalten. Zellen können daher bis zu einem bestimmten Ausmaß beeinflussen, welche Mutationen oder andere Veränderungen des Erbgutes sich durchsetzen. Die Verfahren zur gentechnischen Veränderung des Erbguts versuchen diese Regulierungsmechanismen möglichst zu umgehen, um zum gewünschten Erfolg zu kommen.

Stellungnahme der Autoren

Kombinationen an Merkmalen wären nicht selektiert worden, wenn kein aktiver züchterischer Eingriff erfolgt wäre. Viele konventionelle Züchtungstechniken zielen gerade darauf ab, natürliche Regulierungsmechanismen bei Pflanzen zu umgehen, z. B. das Einbringen von reifem Pollen auf unreife Stempel von geschlossenen Knospen zur Überwindung von Selbstinkompatibilität (sogen. bud pollination). Tatsächlich erfordert es auch einen aktiven Erhalt von Kulturarten – etwa in Genbanken – da sonst züchterisch wertvolle Merkmale verloren gehen.

Im Vergleich zu Genome Editing führen zufällige Mutationen nicht dazu, dass beispielsweise in einem Weizen alle relevanten Gen-Orte eines Gens gleichzeitig verändert werden. Wang et al. (2017) berichten über die erfolgreiche Veränderung von Brotweizen auf allen sechs Chromosomen gleichzeitig.

Die zitierte Studie von Wang et al. ist bereits im Jahr 2014 veröffentlicht worden. In der zitierten Studie ist es allerdings nicht gelungen, eine erfolgreiche Veränderung auf allen sechs Chromosomen gleichzeitig zu erzielen. Dies wurde nur durch die Selbstung einzelner Linien erreicht. Erst 2018 nach der Veröffentlichung des vorliegenden Berichtes erfolgte eine Publikation zu einem erfolgreichen "multiplexed Genom Editing (MGE)" durch Wang et al.¹ Gleichwohl konnte ein ähnliches Ergebnis mittels klassischer Mutagenese durch TILLING erreicht werden (Acevedo-Garcia et al., 2017)². Das Ergebnis ist nahezu identisch, allerdings erforderte der Weg der Wang et al.- Studie weniger Linien und weniger Arbeitsaufwand. Daher können MGE und klassische Züchtung durchaus zu einem ähnlichen Ergebnis führen. Zudem ist davon auszugehen, dass in den Linien nach Wang et al. weniger Nicht-Ziel-Effekt-Mutationen zu identifizieren sind.

Es gibt verschiedene Studien über Nicht-Ziel-Effekte. Hier zu nennen sind zum Beispiel Schaefer et al. (2017)³ Frock et al. (2015)⁴, Fu et al. (2013)⁵, Kim et al. (2016)⁶ und Tsai et al. (2015)⁷. Aus ihnen kann man schließen, dass es bis zu 150 Nicht-Ziel-Effekte geben kann. Es ist zudem noch nicht abschließend geklärt, ob die bisherigen Analysemethoden, mit denen solche Nicht-Ziel-Effekte nachgewiesen

Die Kritik zur Schaefer-Studie wurde im Bericht ausführlich dargestellt. Die genannten Studien 4-7 beziehen sich alle auf humane Zelllinien; dabei ist zu berücksichtigen, dass es sich bei diesen Zelllinien um Krebszellen handelt. Die natürlichen Reparaturmechanismen greifen hier anders. Zudem verfügen die Zellen nicht mehr über ihr natürliches Genom, da es bei vielen Krebszellen zu zum Teil massiven Translokationen und Veränderungen der gesamten Genomstruktur kommt. Es ist auch

¹ http://doi.org/10.1089/crispr.2017.0010

² http://onlinelibrary.wiley.com/doi/10.1111/pbi.12631/references

Zusammengefasster Kommentar (Kurzform)	Stellungnahme der Autoren
werden können, wirklich alle Nicht-Ziel-Effekte aufdecken können. Solange nicht geklärt ist, wie viele Nicht-Ziel-Effekte die einzelnen Methoden hervorrufen und welche Auswirkungen diese im Einzelfall haben, ist es fahrlässig von "sehr seltenen" Effekten zu sprechen und damit eine Sicherheit zu suggerieren, die nicht vorhanden ist. 3 https://www.nature.com/nmeth/journal/v14/n6/full/nmeth.4293.html 4 https://www.nature.com/nbt/journal/v33/n2/full/nbt.3101.html 5 https://www.nature.com/nbt/journal/v31/n9/full/nbt.2623.html 6 http://genome.cshlp.org/content/26/3/406.short 7 https://www.nature.com/nbt/journal/v33/n2/full/nbt.3117.html	anzumerken, dass in Studien an Tieren und Pflanzen solche Raten an Nicht-Ziel- Effekten nicht beschrieben worden sind.
Mit Hilfe von Genome Editing ist es möglich, die DNA eines Organismus schrittweise derart umzuschreiben, dass ein völlig neuer Organismus entsteht.	Dies ist auch schon durch klassische Züchtung möglich. In der Vergangenheit sind so zahlreiche neue Arten entstanden - zum Beispiel die Triticale, die eine Kombinationskreuzung (inklusive Embryo Rescue) aus Roggen und Weizen darstellt. Auch unser heutiger Raps (Brassica napus) ist eine Kreuzung aus zwei Wildarten (Brassica rapa und Brassica oleracea). In Kapitel 4.6.1 wurde auf multiple Genomänderung durch Genome Editing eingegangen.
Im Bericht wird an zahlreichen Stellen darauf hingewiesen, dass zu zentralen Fragestellungen wenig oder überhaupt keine wissenschaftlichen Studien veröffentlicht wurden (z. B. Bewertung von "Off-Target"-Effekten, insbesondere beim Verfahren des "Base-Editing" oder bei der Bewertung von Effekten auf angrenzende Gene bzw. pleiotrope Effekte). Aussagen werden teilweise nicht durch Quellenangaben gestützt. Gerade bei der Diskussion von Off-Target-Effekten fehlen im Bericht außerdem Hinweise auf die Anzahl und Qualität der herangezogenen Publikationen (z. B. Einzelstudie oder Review). Die Formulierung auf Seite 22 "Beim TALEN-Verfahren konnten in einer Studie neben der	Im Gegensatz zur Darstellung des Kommentars ist nicht generell in zentralen Fragen eine eingeschränkte Datenlage vorhanden, sondern nur zu spezifischen Techniken, z. B. Base Editing. Pleiotrope Effekte sind auch kein spezifisches Risiko der Technik, sondern an die modifizierten Gen-Orte geknüpft. Aus der konventionellen Züchtung sind dazu weitreichende Kenntnisse vorhanden. Die vermischende Betrachtung verschiedener Aspekte und Techniken ist nicht zielführend. Alle Publikationen sind hinreichend angegeben und können vom interessierten Leser im Literaturverzeichnis nachgeschaut werden. Die erwähnte Studie bei TALENs ist nur beispielhaft zu sehen, es gibt noch weitere Studien an Pflanzen z. B. Shan et al., 2015, die keine Off-Target-Effekte bei TALENs identifizieren konnten. Der Bericht wird um diese Studien ergänzt.
erwarteten Mutation noch drei weitere Deletionen identifiziert werden" erweckt z.B. den Eindruck, dass evtl. tatsächlich nur eine einzige Studie zu diesem Thema veröffentlicht bzw. im Bericht	

Zusammengefasster Kommentar (Kurzform)	Stellungnahme der Autoren
ausgewertet wurde.	
Eine Betrachtung von möglichen negativen Effekten multipler	Der Bericht beschreibt die technischen Möglichkeiten. Multiple Genomveränderungen
Genomveränderungen findet im Bericht nicht statt.	kommen durchaus auch natürlich vor und sind nicht per se negativ. Die technisch bedingten Risiken der Methoden werden umfassend dargestellt. Da der Bericht die veränderten Eigenschaften nicht betrachtet (was alle klassischen und modernen Züchtungsverfahren gleichermaßen betrifft), ist dem Thema "multiple Genomveränderungen" kein besonderes Kapitel gewidmet.
Die völlige Ausblendung epigenetischer Effekte ist weder nachvollziehbar noch akzeptabel.	Der Einsatz neuer Technologie zur epigenetischen Beeinflussung wurde bewusst ausgeklammert, um den Bericht fokussiert zu halten. Epigenetische Modifikation stellt eine weitere technische Anwendung dar, die die Darstellung und Bewertung der im Bericht betrachteten nicht beeinflusst.